On shape of product spaces

Yukihiro Kodama
{"title":"On shape of product spaces","authors":"Yukihiro Kodama","doi":"10.1016/0016-660X(78)90045-4","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that if <em>X</em> is a compactum and <em>Y</em> is metrizable Sh<sub>5</sub>(<em>X</em> × <em>Y</em>) is not generally determined by Sh<sub>5</sub>(<em>X</em>) and Sh<sub>5</sub>(<em>Y</em>), where Sh<sub>5</sub>(<em>Z</em>) is the strong shape of <em>Z</em> in the sense of Borsuk. In this paper it is proved that Sh(<em>X</em> × <em>Y</em>) is uniquely determined by Sh(<em>X</em>) and Sh(<em>Y</em>), where Sh(<em>Z</em>) is the shape of <em>Z</em> in the sense of Fox. If <em>X</em> is an FANR and <em>Y</em> is an MANR, then <em>X</em> × <em>Y</em> is an MANR.</p></div>","PeriodicalId":100574,"journal":{"name":"General Topology and its Applications","volume":"8 2","pages":"Pages 141-150"},"PeriodicalIF":0.0000,"publicationDate":"1978-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0016-660X(78)90045-4","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Topology and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0016660X78900454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

It is known that if X is a compactum and Y is metrizable Sh5(X × Y) is not generally determined by Sh5(X) and Sh5(Y), where Sh5(Z) is the strong shape of Z in the sense of Borsuk. In this paper it is proved that Sh(X × Y) is uniquely determined by Sh(X) and Sh(Y), where Sh(Z) is the shape of Z in the sense of Fox. If X is an FANR and Y is an MANR, then X × Y is an MANR.

关于积空间的形状
已知如果X是紧致的,Y是可度制的,Sh5(X × Y)一般不是由Sh5(X)和Sh5(Y)决定的,其中Sh5(Z)是Borsuk意义上的Z的强形状。本文证明了Sh(X × Y)是由Sh(X)和Sh(Y)唯一确定的,其中Sh(Z)是Fox意义下Z的形状。如果X是FANR, Y是MANR,则X × Y是MANR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信