{"title":"Investigation of Foreign Amylase Adulteration in Honey Distributed in Japan by Rapid and Improved Native PAGE Activity Staining Method.","authors":"Yushi Takahashi, Izumi Yoshida, Toshiaki Yokozeki, Tomoji Igarashi, Kazuhiro Fujita","doi":"10.5458/jag.jag.JAG-2023_0002","DOIUrl":null,"url":null,"abstract":"<p><p>Foreign amylase addition to honey in an effort to disguise diastase activity has become a widespread form of food fraud. However, since there is no report on the investigation in Japan, we investigated foreign amylases in 67 commercial honeys in Japan. First, the α-glucosidase and diastase activities of honeys were measured, which revealed that only α-glucosidase activity was significantly low in several samples. As both enzymes are secreted from honeybee glands, it is unlikely that only one enzyme was inactivated during processing. Therefore, we suspected the presence of foreign amylase. α-Amylase in honey were assigned using protein analysis software based on LC-QTOF-MS. As a result, α-amylases from <i>Aspergillus</i> and <i>Geobacillus</i> were detected in 13 and 6 out of 67 honeys, respectively. To detect foreign amylases easily, we developed a cost-effective method using native PAGE. Conventional native PAGE failed to separate the α-amylase derived from honeybee and <i>Geobacillus</i>. However, when native PAGE was performed using a gel containing 1 % maltodextrin, the α-amylase from honeybee did not migrated in the gel and the α-amylase could be separated from the other two α-amylases. The results from this method were consistent with those of LC-QTOF-MS method, suggesting that the novel native PAGE method can be used to detect foreign amylases.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10738855/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2023_0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Foreign amylase addition to honey in an effort to disguise diastase activity has become a widespread form of food fraud. However, since there is no report on the investigation in Japan, we investigated foreign amylases in 67 commercial honeys in Japan. First, the α-glucosidase and diastase activities of honeys were measured, which revealed that only α-glucosidase activity was significantly low in several samples. As both enzymes are secreted from honeybee glands, it is unlikely that only one enzyme was inactivated during processing. Therefore, we suspected the presence of foreign amylase. α-Amylase in honey were assigned using protein analysis software based on LC-QTOF-MS. As a result, α-amylases from Aspergillus and Geobacillus were detected in 13 and 6 out of 67 honeys, respectively. To detect foreign amylases easily, we developed a cost-effective method using native PAGE. Conventional native PAGE failed to separate the α-amylase derived from honeybee and Geobacillus. However, when native PAGE was performed using a gel containing 1 % maltodextrin, the α-amylase from honeybee did not migrated in the gel and the α-amylase could be separated from the other two α-amylases. The results from this method were consistent with those of LC-QTOF-MS method, suggesting that the novel native PAGE method can be used to detect foreign amylases.