{"title":"A 1.2 V CMOS four-quadrant analog multiplier","authors":"Shuo-Yuan Hsiao, Chung-Yu Wu","doi":"10.1109/ISCAS.1997.608684","DOIUrl":null,"url":null,"abstract":"A new CMOS four-quadrant analog multiplier is proposed and analyzed. By applying differential input signals to a set of combiners, the multiplication function can be implemented. Based on the proposed new combiner circuit, a low-voltage high-performance CMOS four-quadrant analog multiplier is designed and fabricated by 0.8 /spl mu/m N-well double-poly-double-metal CMOS technology. Experimental results have shown that, under single 1.2 V supply voltage, the circuit has 0.89% linearity error and 1.1% total harmonic distortion under the maximum-scale input 500 mV/sub p.p/ at both inputs. The measured -3 dB bandwidth is 2.2 MHz and the power dissipation is 2.8 mW. The input bandwidth of the multiplier can be designed to reach the GHz range. Simple structure, low-voltage low-power capability, and high performance make the proposed multiplier quite feasible in many applications.","PeriodicalId":68559,"journal":{"name":"电路与系统学报","volume":"28 1","pages":"241-244 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ISCAS.1997.608684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
A new CMOS four-quadrant analog multiplier is proposed and analyzed. By applying differential input signals to a set of combiners, the multiplication function can be implemented. Based on the proposed new combiner circuit, a low-voltage high-performance CMOS four-quadrant analog multiplier is designed and fabricated by 0.8 /spl mu/m N-well double-poly-double-metal CMOS technology. Experimental results have shown that, under single 1.2 V supply voltage, the circuit has 0.89% linearity error and 1.1% total harmonic distortion under the maximum-scale input 500 mV/sub p.p/ at both inputs. The measured -3 dB bandwidth is 2.2 MHz and the power dissipation is 2.8 mW. The input bandwidth of the multiplier can be designed to reach the GHz range. Simple structure, low-voltage low-power capability, and high performance make the proposed multiplier quite feasible in many applications.