Robust and fast visual tracking using constrained sparse coding and dictionary learning

Tianxiang Bai, Youfu Li, Xiaolong Zhou
{"title":"Robust and fast visual tracking using constrained sparse coding and dictionary learning","authors":"Tianxiang Bai, Youfu Li, Xiaolong Zhou","doi":"10.1109/IROS.2012.6385459","DOIUrl":null,"url":null,"abstract":"We present a novel appearance model using sparse coding with online sparse dictionary learning techniques for robust visual tracking. In the proposed appearance model, the target appearance is modeled via online sparse dictionary learning technique with an “elastic-net constraint”. This scheme allows us to capture the characteristics of the target local appearance, and promotes the robustness against partial occlusions during tracking. Additionally, we unify the sparse coding and online dictionary learning by defining a “sparsity consistency constraint” that facilitates the generative and discriminative capabilities of the appearance model. Moreover, we propose a robust similarity metric that can eliminate the outliers from the corrupted observations. We then integrate the proposed appearance model with the particle filter framework to form a robust visual tracking algorithm. Experiments on publicly available benchmark video sequences demonstrate that the proposed appearance model improves the tracking performance compared with other state-of-the-art approaches.","PeriodicalId":6358,"journal":{"name":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"55 1","pages":"3824-3829"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2012.6385459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a novel appearance model using sparse coding with online sparse dictionary learning techniques for robust visual tracking. In the proposed appearance model, the target appearance is modeled via online sparse dictionary learning technique with an “elastic-net constraint”. This scheme allows us to capture the characteristics of the target local appearance, and promotes the robustness against partial occlusions during tracking. Additionally, we unify the sparse coding and online dictionary learning by defining a “sparsity consistency constraint” that facilitates the generative and discriminative capabilities of the appearance model. Moreover, we propose a robust similarity metric that can eliminate the outliers from the corrupted observations. We then integrate the proposed appearance model with the particle filter framework to form a robust visual tracking algorithm. Experiments on publicly available benchmark video sequences demonstrate that the proposed appearance model improves the tracking performance compared with other state-of-the-art approaches.
使用约束稀疏编码和字典学习的鲁棒和快速视觉跟踪
我们提出了一种新的外观模型,使用稀疏编码和在线稀疏字典学习技术进行鲁棒视觉跟踪。在该模型中,利用在线稀疏字典学习技术和“弹性网络约束”对目标的外观进行建模。该方案使我们能够捕获目标局部外观的特征,并提高了跟踪过程中对部分遮挡的鲁棒性。此外,我们通过定义一个“稀疏一致性约束”来统一稀疏编码和在线字典学习,该约束促进了外观模型的生成和判别能力。此外,我们提出了一种鲁棒的相似性度量,可以从损坏的观测中消除异常值。然后,我们将所提出的外观模型与粒子滤波框架相结合,形成一个鲁棒的视觉跟踪算法。在公开的基准视频序列上的实验表明,与其他最先进的方法相比,所提出的外观模型提高了跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信