{"title":"Feasibility of chipscale integration of single-photon switched digital loop buffer","authors":"Xiaoxi Wang , Shayan Mookherjea","doi":"10.1016/j.chip.2022.100028","DOIUrl":null,"url":null,"abstract":"<div><p><strong>A strategy for realizing a microchip-scale single-photon digital loop buffer controlled by low-voltage electronic signals was studied in the context of integrated photonics. A potential implementation for bridging a gap between other technologies used a recirculating loop architecture based on advances in low-loss passive waveguides and a fast electro-optic add-drop switch. Although the requirements of single-photon buffers are demanding, our analysis suggested that a voltage-controlled, room-temperature catch-and-store short-term quantum memory for light on a chip may be feasible in certain regimes</strong>.</p></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"1 4","pages":"Article 100028"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2709472322000260/pdfft?md5=1c3f2a03c22c30b84242ae70e7d19fc0&pid=1-s2.0-S2709472322000260-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472322000260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A strategy for realizing a microchip-scale single-photon digital loop buffer controlled by low-voltage electronic signals was studied in the context of integrated photonics. A potential implementation for bridging a gap between other technologies used a recirculating loop architecture based on advances in low-loss passive waveguides and a fast electro-optic add-drop switch. Although the requirements of single-photon buffers are demanding, our analysis suggested that a voltage-controlled, room-temperature catch-and-store short-term quantum memory for light on a chip may be feasible in certain regimes.