Special Case of Rota's Basis Conjecture on Graphic Matroids

IF 0.7 4区 数学 Q2 MATHEMATICS
Shun-ichi Maezawa, Akiko Yazawa
{"title":"Special Case of Rota's Basis Conjecture on Graphic Matroids","authors":"Shun-ichi Maezawa, Akiko Yazawa","doi":"10.37236/10835","DOIUrl":null,"url":null,"abstract":"Gian-Carlo Rota conjectured that for any $n$ bases $B_1,B_2,\\ldots,B_n$ in a matroid of rank $n$, there exist $n$ disjoint transversal bases of $B_1,B_2,\\ldots,B_n$. The conjecture for graphic matroids corresponds to the problem of an edge-decomposition as follows; If an edge-colored connected multigraph $G$ has $n-1$ colors and the graph induced by the edges colored with $c$ is a spanning tree for each color $c$, then $G$ has $n-1$ mutually edge-disjoint rainbow spanning trees. In this paper, we prove that edge-colored graphs where the edges colored with $c$ induce a spanning star for each color $c$ can be decomposed into rainbow spanning trees.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"27 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/10835","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Gian-Carlo Rota conjectured that for any $n$ bases $B_1,B_2,\ldots,B_n$ in a matroid of rank $n$, there exist $n$ disjoint transversal bases of $B_1,B_2,\ldots,B_n$. The conjecture for graphic matroids corresponds to the problem of an edge-decomposition as follows; If an edge-colored connected multigraph $G$ has $n-1$ colors and the graph induced by the edges colored with $c$ is a spanning tree for each color $c$, then $G$ has $n-1$ mutually edge-disjoint rainbow spanning trees. In this paper, we prove that edge-colored graphs where the edges colored with $c$ induce a spanning star for each color $c$ can be decomposed into rainbow spanning trees.
图形拟阵上Rota基猜想的特例
Gian-Carlo Rota推测,对于秩为$n$的矩阵中的任意$n个基$B_1,B_2,\ldots,B_n$,存在$B_1,B_2,\ldots,B_n$的$n$不相交的截边基。图拟阵的猜想对应如下的边分解问题:如果一个边着色连通多图$G$有$n-1$种颜色,并且由$c$着色的边所生成的图是每种颜色$c$的一棵生成树,则$G$有$n-1$棵相互边不相交的彩虹生成树。在本文中,我们证明了用$c$着色的边彩色图可以被分解成彩虹生成树,其中每个颜色$c$都有一个生成星。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信