Adaptive pointwise estimation of conditional density function

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
K. Bertin, C. Lacour, V. Rivoirard
{"title":"Adaptive pointwise estimation of conditional density function","authors":"K. Bertin, C. Lacour, V. Rivoirard","doi":"10.1214/14-AIHP665","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of estimating $f$, the conditional density of $Y$ given $X$, by using an independent sample distributed as $(X,Y)$ in the multivariate setting. We consider the estimation of $f(x,.)$ where $x$ is a fixed point. We define two different procedures of estimation, the first one using kernel rules, the second one inspired from projection methods. Both adapted estimators are tuned by using the Goldenshluger and Lepski methodology. After deriving lower bounds, we show that these procedures satisfy oracle inequalities and are optimal from the minimax point of view on anisotropic Holder balls. Furthermore, our results allow us to measure precisely the influence of $\\mathrm{f}_X(x)$ on rates of convergence, where $\\mathrm{f}_X$ is the density of $X$. Finally, some simulations illustrate the good behavior of our tuned estimates in practice.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"40 1","pages":"939-980"},"PeriodicalIF":1.2000,"publicationDate":"2013-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/14-AIHP665","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 34

Abstract

In this paper we consider the problem of estimating $f$, the conditional density of $Y$ given $X$, by using an independent sample distributed as $(X,Y)$ in the multivariate setting. We consider the estimation of $f(x,.)$ where $x$ is a fixed point. We define two different procedures of estimation, the first one using kernel rules, the second one inspired from projection methods. Both adapted estimators are tuned by using the Goldenshluger and Lepski methodology. After deriving lower bounds, we show that these procedures satisfy oracle inequalities and are optimal from the minimax point of view on anisotropic Holder balls. Furthermore, our results allow us to measure precisely the influence of $\mathrm{f}_X(x)$ on rates of convergence, where $\mathrm{f}_X$ is the density of $X$. Finally, some simulations illustrate the good behavior of our tuned estimates in practice.
条件密度函数的自适应点估计
本文考虑了在多元环境下,用独立样本分布的$(X,Y)$估计$f$,即给定$X$的$Y$的条件密度问题。我们考虑f(x,.)$的估计,其中$x$是一个不动点。我们定义了两种不同的估计过程,第一种是使用核规则,第二种是受投影方法的启发。两个适应的估计量都是通过使用Goldenshluger和Lepski方法来调整的。在推导出下界之后,我们证明了这些方法满足oracle不等式,并且从极大极小的角度来看,对于各向异性的Holder球是最优的。此外,我们的结果允许我们精确地测量$\mathrm{f}_X(x)$对收敛速率的影响,其中$\mathrm{f}_X$是$ x $的密度。最后,一些仿真说明了我们的调优估计在实践中的良好行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信