S. Yanev, M. Fiore, A. Hinev, P. Ghenev, M. Hristova, P. Panayotov, A. Tonchev, N. Evtimov, L. Aloe, G. Chaldakov
{"title":"From Antitubulins to Trackins","authors":"S. Yanev, M. Fiore, A. Hinev, P. Ghenev, M. Hristova, P. Panayotov, A. Tonchev, N. Evtimov, L. Aloe, G. Chaldakov","doi":"10.14748/BMR.V27.2112","DOIUrl":null,"url":null,"abstract":"Microtubules (MT) are dynamically instable, assembling and disassembling structures of the cell. Tubulin, the major building protein of MT, is a heterodimer consisting of α and ẞ subunits. Agents that bind to tubulin and inhibit its assembly lead to the inhibition of MT formation. Such tubulin-binding agents are usually termed MT-disassembling agents or antitubulins. Endocytosis, matrix protein secretion, cell division, cell migration and inflammation are examples of MT-dependent processes. Their dysfunction, in particular in arterial smooth muscle cells (ASMC), is critically involved in atherogenesis. Here we Dance round (i) MT-based secretory pathway in ASMC and, in turn, antitubulins for atherosclerosis therapy, and (ii) the neurotrophins, particularly nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and their receptors Trk (tyrosine receptor kinase; pronounced “track”), introducing the term trackins – Trk-targeting agents (TTA) that influence positively (agonistically) or negatively (antagonistically) the activity of TrkA receptor for NGF and/or TrkB receptor for BDNF. We propose that some trackins and their native ligands may have therapeutic potentials for cardiometabolic, neuropsychiatric, oncologic and other diseases. Finally the interaction of MT-tubulin and neurotrophin Trk receptors is outlined.","PeriodicalId":8906,"journal":{"name":"Biomedical Reviews","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14748/BMR.V27.2112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Microtubules (MT) are dynamically instable, assembling and disassembling structures of the cell. Tubulin, the major building protein of MT, is a heterodimer consisting of α and ẞ subunits. Agents that bind to tubulin and inhibit its assembly lead to the inhibition of MT formation. Such tubulin-binding agents are usually termed MT-disassembling agents or antitubulins. Endocytosis, matrix protein secretion, cell division, cell migration and inflammation are examples of MT-dependent processes. Their dysfunction, in particular in arterial smooth muscle cells (ASMC), is critically involved in atherogenesis. Here we Dance round (i) MT-based secretory pathway in ASMC and, in turn, antitubulins for atherosclerosis therapy, and (ii) the neurotrophins, particularly nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and their receptors Trk (tyrosine receptor kinase; pronounced “track”), introducing the term trackins – Trk-targeting agents (TTA) that influence positively (agonistically) or negatively (antagonistically) the activity of TrkA receptor for NGF and/or TrkB receptor for BDNF. We propose that some trackins and their native ligands may have therapeutic potentials for cardiometabolic, neuropsychiatric, oncologic and other diseases. Finally the interaction of MT-tubulin and neurotrophin Trk receptors is outlined.