Cristina Soto, Bridget Algee-Hewitt, G. Morante, Dennis Slice, D. Steadman
{"title":"Age-at-Death Estimation for Modern Populations in Mexico and Puerto Rico through the Use of 3D Laser Scans of the Pubic Symphysis","authors":"Cristina Soto, Bridget Algee-Hewitt, G. Morante, Dennis Slice, D. Steadman","doi":"10.1353/hub.2017.0055","DOIUrl":null,"url":null,"abstract":"Reliable age-at-death estimates from the adult skeleton are of fundamental importance in forensic anthropology, because it contributes to the identity parameters used in a medicolegal death investigation. However, reliable estimates are difficult because many traditional aging methods depend on a set of population-specific criteria derived from individuals of European and African descent. The absence of information on the potential differences in the aging patterns of underrepresented, especially Latinx, populations may hinder our efforts to produce useful age-at-death estimates. In response to these concerns, this study explores the utility of currently available aging techniques and whether populationspecific aging methods among Latinx groups are needed. The authors obtained data from two skeletal collections representing modern individuals of Mexican and Puerto Rican origin. They examined five newly developed computational shape-based techniques using 3D laser scans of the pubic symphysis and one traditional bone-to-phase technique. A validation test of all computational and traditional methods was implemented, and new population-specific equations using the computational algorithms were generated and tested against a subsample. Results suggest that traditional and computational aging techniques applied to the pubic symphysis perform best with individuals within 35–45 years of age. Levels of bias and inaccuracy increase as chronological age increases, with overestimation of individuals younger than 35 years and underestimation of individuals older than 45 years. New regression models provided error rates comparable to, and in some occasions outperformed, the original computational models developed on white American males, but age estimates did not significantly improve. This study shows that population-specific models do not necessarily improve age estimates in Latinx samples. Results do suggest that computational methods can ultimately outperform the Suchey-Brooks method and provide improved objectivity when estimating age at death in Latinx samples.","PeriodicalId":13053,"journal":{"name":"Human Biology","volume":"31 1","pages":"-"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1353/hub.2017.0055","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Reliable age-at-death estimates from the adult skeleton are of fundamental importance in forensic anthropology, because it contributes to the identity parameters used in a medicolegal death investigation. However, reliable estimates are difficult because many traditional aging methods depend on a set of population-specific criteria derived from individuals of European and African descent. The absence of information on the potential differences in the aging patterns of underrepresented, especially Latinx, populations may hinder our efforts to produce useful age-at-death estimates. In response to these concerns, this study explores the utility of currently available aging techniques and whether populationspecific aging methods among Latinx groups are needed. The authors obtained data from two skeletal collections representing modern individuals of Mexican and Puerto Rican origin. They examined five newly developed computational shape-based techniques using 3D laser scans of the pubic symphysis and one traditional bone-to-phase technique. A validation test of all computational and traditional methods was implemented, and new population-specific equations using the computational algorithms were generated and tested against a subsample. Results suggest that traditional and computational aging techniques applied to the pubic symphysis perform best with individuals within 35–45 years of age. Levels of bias and inaccuracy increase as chronological age increases, with overestimation of individuals younger than 35 years and underestimation of individuals older than 45 years. New regression models provided error rates comparable to, and in some occasions outperformed, the original computational models developed on white American males, but age estimates did not significantly improve. This study shows that population-specific models do not necessarily improve age estimates in Latinx samples. Results do suggest that computational methods can ultimately outperform the Suchey-Brooks method and provide improved objectivity when estimating age at death in Latinx samples.
期刊介绍:
Human Biology publishes original scientific articles, brief communications, letters to the editor, and review articles on the general topic of biological anthropology. Our main focus is understanding human biological variation and human evolution through a broad range of approaches.
We encourage investigators to submit any study on human biological diversity presented from an evolutionary or adaptive perspective. Priority will be given to interdisciplinary studies that seek to better explain the interaction between cultural processes and biological processes in our evolution. Methodological papers are also encouraged. Any computational approach intended to summarize cultural variation is encouraged. Studies that are essentially descriptive or concern only a limited geographic area are acceptable only when they have a wider relevance to understanding human biological variation.
Manuscripts may cover any of the following disciplines, once the anthropological focus is apparent: human population genetics, evolutionary and genetic demography, quantitative genetics, evolutionary biology, ancient DNA studies, biological diversity interpreted in terms of adaptation (biometry, physical anthropology), and interdisciplinary research linking biological and cultural diversity (inferred from linguistic variability, ethnological diversity, archaeological evidence, etc.).