{"title":"Logic Synthesis for Hybrid CMOS-ReRAM Sequential Circuits","authors":"Saman Froehlich, S. Shirinzadeh, R. Drechsler","doi":"10.1109/ISVLSI.2019.00084","DOIUrl":null,"url":null,"abstract":"Resistive Random Access Memory (ReRAM) is an emerging non-volatile technology with high scalability and zero standby power which allows to perform logic primitives. ReRAM crossbar arrays combined with a CMOS ubstrate provide a wide range of benefits in logic synthesis. In this paper, we propose to exploit ReRAM in sequential circuits as it provides both required features as a computational and memory element. We propose a fully automated synthesis approach based on graph representations (i.e., BDDs and AIGs) for synthesis of sequential circuits on hybrid CMOS-ReRAM architectures. We propose an algorithm to efficiently divide the target function into two independent computational parts. This allows to merge part of the computation within a ReRAM unit and utilize its computational capabilities besides its function as a sequential element in order to minimize the CMOS overhead. Experimental results show that ReRAM allows for a significant reduction in CMOS size of up to 40.9% for BDDs with an average of 8.7% for BDDs and up to 10.1% with an average of 3.2% for AIGs.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"1 1","pages":"431-436"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Resistive Random Access Memory (ReRAM) is an emerging non-volatile technology with high scalability and zero standby power which allows to perform logic primitives. ReRAM crossbar arrays combined with a CMOS ubstrate provide a wide range of benefits in logic synthesis. In this paper, we propose to exploit ReRAM in sequential circuits as it provides both required features as a computational and memory element. We propose a fully automated synthesis approach based on graph representations (i.e., BDDs and AIGs) for synthesis of sequential circuits on hybrid CMOS-ReRAM architectures. We propose an algorithm to efficiently divide the target function into two independent computational parts. This allows to merge part of the computation within a ReRAM unit and utilize its computational capabilities besides its function as a sequential element in order to minimize the CMOS overhead. Experimental results show that ReRAM allows for a significant reduction in CMOS size of up to 40.9% for BDDs with an average of 8.7% for BDDs and up to 10.1% with an average of 3.2% for AIGs.