Device Performance of Double-Gate Schottky-Barrier Graphene Nanoribbon Field-Effect Transistors with Physical Scaling

IF 3.9 Q2 NANOSCIENCE & NANOTECHNOLOGY
M. Chuan, Muhammad Amirul Irfan Misnon, N. Alias, M. Tan
{"title":"Device Performance of Double-Gate Schottky-Barrier Graphene Nanoribbon Field-Effect Transistors with Physical Scaling","authors":"M. Chuan, Muhammad Amirul Irfan Misnon, N. Alias, M. Tan","doi":"10.1155/2023/1709570","DOIUrl":null,"url":null,"abstract":"Moore’s law is approaching its limit due to various challenges, especially the size limit of the transistors. The International Roadmap for Devices and Systems (IRDS), the successor of International Technology Roadmap for Semiconductors (ITRS), has included 2D materials as an alternative approach for the More-than-Moore nanoelectronic applications. Among the 2D materials, graphene nanoribbons (GNRs) have been widely used as the alternative channel materials of field-effect transistors (FETs). In this paper, the impacts of physical scaling on the device performance of double-gate Schottky-barrier GNR FETs (DG-SB-GNRFETs) are investigated by using NanoTCAD ViDES simulation tool based on the tight-binding Hamiltonian and self-consistent solutions of 3D Poisson and Schrödinger equations with open boundary conditions within the nonequilibrium Green’s function formalism. The extracted device performance parameters include the subthreshold swing and on-to-off current ratio. The results suggest that the performances of DG-SB-GNRFETs are strongly dependent on their physical parameters, especially the widths of the GNRs.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/1709570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Moore’s law is approaching its limit due to various challenges, especially the size limit of the transistors. The International Roadmap for Devices and Systems (IRDS), the successor of International Technology Roadmap for Semiconductors (ITRS), has included 2D materials as an alternative approach for the More-than-Moore nanoelectronic applications. Among the 2D materials, graphene nanoribbons (GNRs) have been widely used as the alternative channel materials of field-effect transistors (FETs). In this paper, the impacts of physical scaling on the device performance of double-gate Schottky-barrier GNR FETs (DG-SB-GNRFETs) are investigated by using NanoTCAD ViDES simulation tool based on the tight-binding Hamiltonian and self-consistent solutions of 3D Poisson and Schrödinger equations with open boundary conditions within the nonequilibrium Green’s function formalism. The extracted device performance parameters include the subthreshold swing and on-to-off current ratio. The results suggest that the performances of DG-SB-GNRFETs are strongly dependent on their physical parameters, especially the widths of the GNRs.
物理标度双栅肖特基势垒石墨烯纳米带场效应晶体管的器件性能
由于各种各样的挑战,尤其是晶体管的尺寸限制,摩尔定律正在接近极限。国际器件和系统路线图(IRDS)是国际半导体技术路线图(ITRS)的继承者,已经将2D材料作为超过摩尔纳米电子应用的替代方法。在二维材料中,石墨烯纳米带作为场效应晶体管(fet)的替代沟道材料得到了广泛的应用。本文基于非平衡格林函数形式下开放边界条件下三维泊松方程和Schrödinger方程的紧密结合哈密顿解和自一致解,利用NanoTCAD ViDES仿真工具研究了物理标度对双栅肖特基势垒gnrfet (dg - nb - gnrfet)器件性能的影响。提取的器件性能参数包括亚阈值摆幅和通断电流比。结果表明,dg - sb - gnrfet的性能与它们的物理参数,特别是gnr的宽度有很大的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanotechnology
Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
5.50
自引率
2.40%
发文量
25
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信