Danielyn F. Plazos, Allan Brian I. Cabisay, Rommel C. Ongcay, Rydell Reade A. Peramide
{"title":"Design of Foldable Shelter for Post-Disaster Response","authors":"Danielyn F. Plazos, Allan Brian I. Cabisay, Rommel C. Ongcay, Rydell Reade A. Peramide","doi":"10.4028/p-68d3t1","DOIUrl":null,"url":null,"abstract":"The Philippines is hit by different calamities and is considered one of the world's most disaster-prone countries, regularly ranking in the top three countries hit most by natural catastrophes. Foldable shelters provide private and secure living spaces for persons forced to leave or lose their usual housing due to a calamity. This study aimed to design a lightweight steel-framed temporary shelter that can withstand typhoon calamities and follows the design requirements mandated by the National Building Code and National Structural Code of the Philippines. The shelter's design concept emphasized its expandability, allowing it to accommodate one family of 4-5 persons. It also is designed to be deploy easily, safe, and efficient in post-disaster settings. The major factors considered when developing the shelter are the ease of assembly process, a compact and flexible structure, and adaptability to rapidly changing conditions. The structural analysis indicates that it can withstand a typhoon with an average wind speed of 220 kph but will fail in a super typhoon like Haiyan, with an average wind speed of 250 kph. Since this shelter is designed for temporary uses, the maximum wind capacity of 220 kph is acceptable and can be a reasonable basis for using these to replace other shelters.","PeriodicalId":10603,"journal":{"name":"Construction Technologies and Architecture","volume":"5 1","pages":"47 - 52"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Technologies and Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-68d3t1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Philippines is hit by different calamities and is considered one of the world's most disaster-prone countries, regularly ranking in the top three countries hit most by natural catastrophes. Foldable shelters provide private and secure living spaces for persons forced to leave or lose their usual housing due to a calamity. This study aimed to design a lightweight steel-framed temporary shelter that can withstand typhoon calamities and follows the design requirements mandated by the National Building Code and National Structural Code of the Philippines. The shelter's design concept emphasized its expandability, allowing it to accommodate one family of 4-5 persons. It also is designed to be deploy easily, safe, and efficient in post-disaster settings. The major factors considered when developing the shelter are the ease of assembly process, a compact and flexible structure, and adaptability to rapidly changing conditions. The structural analysis indicates that it can withstand a typhoon with an average wind speed of 220 kph but will fail in a super typhoon like Haiyan, with an average wind speed of 250 kph. Since this shelter is designed for temporary uses, the maximum wind capacity of 220 kph is acceptable and can be a reasonable basis for using these to replace other shelters.