A Framework of an Intelligent Recommendation System for Particle Swarm Optimization Based on Meta-learning

Xue-min Liu, Li Li, Jia Wang, Jiaoju Ge, Jun Wang
{"title":"A Framework of an Intelligent Recommendation System for Particle Swarm Optimization Based on Meta-learning","authors":"Xue-min Liu, Li Li, Jia Wang, Jiaoju Ge, Jun Wang","doi":"10.1109/ICMSE.2018.8745084","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization has shown great advantages to solve NP-hard problems due to its simplicity, intelligence, efficiency and easy enhancement. However, with a large number of particle swarm optimization variants (PSOs) proposed, there are two issues: First, are the general problems of PSOs in terms of premature convergence, universality and robustness solved thoroughly? Second, how to find the relatively appropriate PSOs in a quick and efficient way when facing real-world complex optimization problems? Therefore, it is so necessary to develop an intelligent recommendation system for PSOs to provide users a black-box tool for various application problems.","PeriodicalId":6847,"journal":{"name":"2018 International Conference on Management Science and Engineering (ICMSE)","volume":"8 1","pages":"507-513"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Management Science and Engineering (ICMSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSE.2018.8745084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Particle swarm optimization has shown great advantages to solve NP-hard problems due to its simplicity, intelligence, efficiency and easy enhancement. However, with a large number of particle swarm optimization variants (PSOs) proposed, there are two issues: First, are the general problems of PSOs in terms of premature convergence, universality and robustness solved thoroughly? Second, how to find the relatively appropriate PSOs in a quick and efficient way when facing real-world complex optimization problems? Therefore, it is so necessary to develop an intelligent recommendation system for PSOs to provide users a black-box tool for various application problems.
基于元学习的粒子群优化智能推荐系统框架
粒子群算法以其简单、智能、高效、易于增强等特点,在求解NP-hard问题中显示出巨大的优势。然而,随着大量粒子群优化变体(pso)的提出,存在两个问题:第一,pso在过早收敛、通用性和鲁棒性方面的一般问题是否得到了彻底解决?第二,面对现实世界的复杂优化问题,如何快速高效地找到相对合适的pso ?因此,有必要开发一个面向pso的智能推荐系统,为用户提供解决各种应用问题的黑箱工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信