An Artificial Life and Genetic Algorithm based on optimization approach with new selecting methods

Chen Yang, Hao Ye, Jing-Chun Wang, Ling Wang
{"title":"An Artificial Life and Genetic Algorithm based on optimization approach with new selecting methods","authors":"Chen Yang, Hao Ye, Jing-Chun Wang, Ling Wang","doi":"10.1109/ICMLC.2002.1174434","DOIUrl":null,"url":null,"abstract":"A hybrid Artificial Life (ALife) system for function optimization that combines ALife colonization with a Genetic Algorithm (GA) includes two stages: in the first stage, the emergent colonization of the ALife system is used to provide an initial population for the GA; the GA is further used to find the optimal solution in the second stage. However, the optimization result is largely affected by the method of how to select the initial population for the GA of the second stage from the ALife colony of the first stage. In this paper, different selection methods are compared and the most effective method proposed, followed by simulation results.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"37 1","pages":"684-688 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1174434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A hybrid Artificial Life (ALife) system for function optimization that combines ALife colonization with a Genetic Algorithm (GA) includes two stages: in the first stage, the emergent colonization of the ALife system is used to provide an initial population for the GA; the GA is further used to find the optimal solution in the second stage. However, the optimization result is largely affected by the method of how to select the initial population for the GA of the second stage from the ALife colony of the first stage. In this paper, different selection methods are compared and the most effective method proposed, followed by simulation results.
基于优化方法的人工生命与遗传算法,提出了新的选择方法
将ALife定殖与遗传算法(GA)相结合的用于函数优化的混合人工生命(ALife)系统包括两个阶段:第一阶段,利用ALife系统的紧急定殖为遗传算法提供初始种群;在第二阶段,进一步利用遗传算法寻找最优解。然而,如何从第一阶段的ALife群体中选择第二阶段遗传算法的初始种群,对优化结果有很大的影响。本文对不同的选择方法进行了比较,提出了最有效的选择方法,并给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信