Surface Ga-boosted Boron-doped $\mathrm{Si}_{0.5}\mathrm{Geo}_{0.5}$ using In-situ CVD Epitaxy: Achieving $1.1 \times 10^{21}\mathrm{cm}^{-3}$ Active Doping Concentration and $5.7\times 10^{-10}\Omega-\mathrm{cm}^{2}$ Contact Resistivity

Haiwen Xu, Jishen Zhang, L. Lima, J. Margetis, R. Khazaka, Q. Xie, J. Tolle, Chengkuan Wang, Haibo Wang, Zuopu Zhou, Qiwen Kong, X. Gong
{"title":"Surface Ga-boosted Boron-doped $\\mathrm{Si}_{0.5}\\mathrm{Geo}_{0.5}$ using In-situ CVD Epitaxy: Achieving $1.1 \\times 10^{21}\\mathrm{cm}^{-3}$ Active Doping Concentration and $5.7\\times 10^{-10}\\Omega-\\mathrm{cm}^{2}$ Contact Resistivity","authors":"Haiwen Xu, Jishen Zhang, L. Lima, J. Margetis, R. Khazaka, Q. Xie, J. Tolle, Chengkuan Wang, Haibo Wang, Zuopu Zhou, Qiwen Kong, X. Gong","doi":"10.1109/VLSITechnology18217.2020.9265058","DOIUrl":null,"url":null,"abstract":"For the first time, we have achieved contact resistivity <tex>$(p_{c}$</tex>) less than 10<inf>−9</inf> Ω-cm<inf>2</inf> for p-type metal/Si<inf>1-x</inf>Ge<inf>x</inf> contacts with in-situ doping-only technique. This is enabled by an optimized surface Gallium (Ga)-boosted Boron (B)-doped <tex>$\\mathrm{Si}_{0.5}\\mathrm{Ge}_{0.5}$</tex> having active doping concentration <tex>$(N_{a})$</tex> of <tex>$1.1 \\times 10^{21}$</tex> cm<inf>−3</inf> grown using reduced pressure chemical vapour deposition (RPCVD). Compared with B-only doped sample with <tex>$N_{a}$</tex> of <tex>$9\\times 10^{20}\\mathrm{cm}^{-3}$</tex> B and Ga codoping enhances <tex>$N_{a}$</tex> by <tex>$2\\times 10^{20} \\mathrm{cm}^{-3}$</tex> reducing <tex>$\\rho_{c}$</tex> from <tex>$1.5\\times 10^{-9}\\Omega-\\mathrm{cm}^{2}$</tex> to 5.7 <tex>$\\times 10^{10}\\Omega-\\mathrm{cm}^{2}.\\ \\rho c$</tex> was extracted using advanced ladder transmission line model (LTLM) structures. It was also found that sub- <tex>$10^{9}\\Omega-\\mathrm{cm}^{2}\\rho_{c}$</tex> of our <tex>$\\mathrm{Ti}/\\mathrm{Si}_{0.5}\\mathrm{Ge}_{0.5}$</tex> contact can be maintained with thermal budget up to 450°C.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"81 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the first time, we have achieved contact resistivity $(p_{c}$) less than 10−9 Ω-cm2 for p-type metal/Si1-xGex contacts with in-situ doping-only technique. This is enabled by an optimized surface Gallium (Ga)-boosted Boron (B)-doped $\mathrm{Si}_{0.5}\mathrm{Ge}_{0.5}$ having active doping concentration $(N_{a})$ of $1.1 \times 10^{21}$ cm−3 grown using reduced pressure chemical vapour deposition (RPCVD). Compared with B-only doped sample with $N_{a}$ of $9\times 10^{20}\mathrm{cm}^{-3}$ B and Ga codoping enhances $N_{a}$ by $2\times 10^{20} \mathrm{cm}^{-3}$ reducing $\rho_{c}$ from $1.5\times 10^{-9}\Omega-\mathrm{cm}^{2}$ to 5.7 $\times 10^{10}\Omega-\mathrm{cm}^{2}.\ \rho c$ was extracted using advanced ladder transmission line model (LTLM) structures. It was also found that sub- $10^{9}\Omega-\mathrm{cm}^{2}\rho_{c}$ of our $\mathrm{Ti}/\mathrm{Si}_{0.5}\mathrm{Ge}_{0.5}$ contact can be maintained with thermal budget up to 450°C.
利用原位CVD外延技术实现$1.1 \乘以10^{21}\ mathm {cm}^{-3}$活性掺杂浓度和$5.7\乘以10^{-10}\Omega-\ mathm {cm}^{2}$接触电阻率
我们首次通过原位掺杂技术实现了p型金属/Si1-xGex触点的接触电阻率$(p_{c}$)小于10−9 Ω-cm2。这是通过优化的表面镓(Ga)增强硼(B)掺杂$\mathrm{Si}_{0.5}\mathrm{Ge}_{0.5}$实现的,其活性掺杂浓度$(N_{a})$为$1.1 \times 10^{21}$ cm−3,使用减压化学气相沉积(RPCVD)生长。与只掺杂B的样品$N_{a}$相比,$9\times 10^{20}\mathrm{cm}^{-3}$的B和Ga共掺杂通过$2\times 10^{20} \mathrm{cm}^{-3}$将$\rho_{c}$从$1.5\times 10^{-9}\Omega-\mathrm{cm}^{2}$还原为5.7增强了$N_{a}$,使用先进的阶梯传输线模型(LTLM)结构提取了$\times 10^{10}\Omega-\mathrm{cm}^{2}.\ \rho c$。还发现,在高达450°C的热预算下,我们的$\mathrm{Ti}/\mathrm{Si}_{0.5}\mathrm{Ge}_{0.5}$接触的次$10^{9}\Omega-\mathrm{cm}^{2}\rho_{c}$可以保持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信