{"title":"Nonexistence of Lyapunov exponents for matrix cocycles","authors":"Xueting Tian","doi":"10.1214/15-AIHP733","DOIUrl":null,"url":null,"abstract":"It follows from Oseledec Multiplicative Ergodic Theorem that the Lyapunov-irregular set of points for which the Oseledec averages of a given continuous cocycle diverge has zero measure with respect to any invariant probability measure. In strong contrast, for any dynamical system $f:X\\rightarrow X$ with exponential specification property and a H$\\ddot{\\text{o}}$lder continuous matrix cocycle $A:X\\rightarrow G (m,\\mathbb{R})$, we show here that if there exist ergodic measures with different Lyapunov spectrum, then the Lyapunov-irregular set of $A$ is residual (i.e., containing a dense $G_\\delta$ set).","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"3 1","pages":"493-502"},"PeriodicalIF":1.2000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AIHP733","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 11
Abstract
It follows from Oseledec Multiplicative Ergodic Theorem that the Lyapunov-irregular set of points for which the Oseledec averages of a given continuous cocycle diverge has zero measure with respect to any invariant probability measure. In strong contrast, for any dynamical system $f:X\rightarrow X$ with exponential specification property and a H$\ddot{\text{o}}$lder continuous matrix cocycle $A:X\rightarrow G (m,\mathbb{R})$, we show here that if there exist ergodic measures with different Lyapunov spectrum, then the Lyapunov-irregular set of $A$ is residual (i.e., containing a dense $G_\delta$ set).
期刊介绍:
The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.