Nonexistence of Lyapunov exponents for matrix cocycles

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Xueting Tian
{"title":"Nonexistence of Lyapunov exponents for matrix cocycles","authors":"Xueting Tian","doi":"10.1214/15-AIHP733","DOIUrl":null,"url":null,"abstract":"It follows from Oseledec Multiplicative Ergodic Theorem that the Lyapunov-irregular set of points for which the Oseledec averages of a given continuous cocycle diverge has zero measure with respect to any invariant probability measure. In strong contrast, for any dynamical system $f:X\\rightarrow X$ with exponential specification property and a H$\\ddot{\\text{o}}$lder continuous matrix cocycle $A:X\\rightarrow G (m,\\mathbb{R})$, we show here that if there exist ergodic measures with different Lyapunov spectrum, then the Lyapunov-irregular set of $A$ is residual (i.e., containing a dense $G_\\delta$ set).","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"3 1","pages":"493-502"},"PeriodicalIF":1.2000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AIHP733","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 11

Abstract

It follows from Oseledec Multiplicative Ergodic Theorem that the Lyapunov-irregular set of points for which the Oseledec averages of a given continuous cocycle diverge has zero measure with respect to any invariant probability measure. In strong contrast, for any dynamical system $f:X\rightarrow X$ with exponential specification property and a H$\ddot{\text{o}}$lder continuous matrix cocycle $A:X\rightarrow G (m,\mathbb{R})$, we show here that if there exist ergodic measures with different Lyapunov spectrum, then the Lyapunov-irregular set of $A$ is residual (i.e., containing a dense $G_\delta$ set).
矩阵共环的Lyapunov指数的不存在性
由Oseledec乘法遍历定理可知,给定连续循环的Oseledec平均值发散的lyapunov -不规则点集对于任意不变概率测度具有零测度。与此相反,对于任何具有指数规范性质的动力系统$f:X\rightarrow X$和一个H $\ddot{\text{o}}$年长的连续矩阵共循环$A:X\rightarrow G (m,\mathbb{R})$,我们证明了如果存在具有不同Lyapunov谱的遍历测度,那么$A$的Lyapunov-不规则集是残差的(即包含一个稠密的$G_\delta$集)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信