Capacitive β-Ga2O3 solar-blind photodetector with graphene electrode

A-Hyun Kim, Geonyeop Lee, Jihyun Kim
{"title":"Capacitive β-Ga2O3 solar-blind photodetector with graphene electrode","authors":"A-Hyun Kim, Geonyeop Lee, Jihyun Kim","doi":"10.1116/6.0001217","DOIUrl":null,"url":null,"abstract":"Conventional solar-blind photodetectors based on the conduction of photoexcited carriers are energy inefficient owing to the power dissipation caused by a resistive sensing mechanism and the narrow bandgap energy of the photon-absorbing layer. Herein, we demonstrate the energy-efficient capacitive sensing of deep-UV wavelengths by integrating an intrinsically solar-blind ultrawide bandgap (UWBG) β-Ga2O3 semiconductor with UV-transparent and conductive graphene electrode. A UWBG β-Ga2O3 eliminates the requirement of a solar-blind deep-UV bandpass filter. The high optical transmittance of the graphene enables UV-C light to be absorbed in the underlying β-Ga2O3, thereby facilitating carrier transport between the graphene electrode and β-Ga2O3. A capacitance change under UV-C excitation is observed, along with excellent reproductivity and spectral selectivity at various frequencies and bias conditions; the sensing performance improves with an increase in frequency. The average power dissipation of the fabricated photodetector in the stand-by (dark) and active (UV-C illumination) modes is 37.7 and 53.3 μW, respectively. Overall, this work introduces a new strategy for developing next-generation compact and energy-efficient solar-blind photodetectors.","PeriodicalId":17571,"journal":{"name":"Journal of Vacuum Science and Technology","volume":"40 1","pages":"053412"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0001217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Conventional solar-blind photodetectors based on the conduction of photoexcited carriers are energy inefficient owing to the power dissipation caused by a resistive sensing mechanism and the narrow bandgap energy of the photon-absorbing layer. Herein, we demonstrate the energy-efficient capacitive sensing of deep-UV wavelengths by integrating an intrinsically solar-blind ultrawide bandgap (UWBG) β-Ga2O3 semiconductor with UV-transparent and conductive graphene electrode. A UWBG β-Ga2O3 eliminates the requirement of a solar-blind deep-UV bandpass filter. The high optical transmittance of the graphene enables UV-C light to be absorbed in the underlying β-Ga2O3, thereby facilitating carrier transport between the graphene electrode and β-Ga2O3. A capacitance change under UV-C excitation is observed, along with excellent reproductivity and spectral selectivity at various frequencies and bias conditions; the sensing performance improves with an increase in frequency. The average power dissipation of the fabricated photodetector in the stand-by (dark) and active (UV-C illumination) modes is 37.7 and 53.3 μW, respectively. Overall, this work introduces a new strategy for developing next-generation compact and energy-efficient solar-blind photodetectors.
石墨烯电极电容式β-Ga2O3太阳盲光电探测器
传统的基于光激发载流子导电性的太阳盲光电探测器由于其电阻感测机制和光子吸收层的窄带能隙导致的功率耗散,存在能量效率低下的问题。在此,我们通过将一种本质太阳盲的超宽带隙(UWBG) β-Ga2O3半导体与紫外透明和导电的石墨烯电极集成在一起,展示了深紫外波长的节能电容传感。UWBG β-Ga2O3消除了对太阳盲深紫外带通滤波器的要求。石墨烯的高透光率使得UV-C光被底层的β-Ga2O3吸收,从而促进了载流子在石墨烯电极和β-Ga2O3之间的传输。在UV-C激发下观察到电容的变化,以及在不同频率和偏置条件下优异的再现性和光谱选择性;传感性能随频率的增加而提高。制备的光电探测器在待机(黑暗)和有源(UV-C照明)模式下的平均功耗分别为37.7和53.3 μW。总的来说,这项工作为开发下一代紧凑和节能的太阳盲光电探测器提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信