Face Detection Using Classifiers Cascade Based on Vector Angle Measure and Multi-Modal Representation

F. Flitti, A. Bermak
{"title":"Face Detection Using Classifiers Cascade Based on Vector Angle Measure and Multi-Modal Representation","authors":"F. Flitti, A. Bermak","doi":"10.1109/SIPS.2007.4387605","DOIUrl":null,"url":null,"abstract":"This paper deals with face detection in still gray level images which is the first step in many automatic systems like video surveillance, face recognition, and images data base management. We propose a new face detection method using a classifiers cascade, each of which is based on a vector angle similarity measure between the investigated window and the face and nonface representatives (centroids). The latter are obtained using a clustering algorithm based on the same measure within the current training data sets, namely the low confidence classified samples at the previous stage of the cascade. First experiment results on refereed face data test sets are very satisfactory.","PeriodicalId":93225,"journal":{"name":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","volume":"22 1","pages":"539-542"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2007.4387605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper deals with face detection in still gray level images which is the first step in many automatic systems like video surveillance, face recognition, and images data base management. We propose a new face detection method using a classifiers cascade, each of which is based on a vector angle similarity measure between the investigated window and the face and nonface representatives (centroids). The latter are obtained using a clustering algorithm based on the same measure within the current training data sets, namely the low confidence classified samples at the previous stage of the cascade. First experiment results on refereed face data test sets are very satisfactory.
基于矢量角度测量和多模态表示的分类器级联人脸检测
在视频监控、人脸识别、图像数据库管理等自动化系统中,静态灰度图像是人脸检测的第一步。我们提出了一种新的使用分类器级联的人脸检测方法,每个分类器级联都是基于被调查窗口与人脸和非人脸代表(质心)之间的向量角度相似性度量。后者是使用基于当前训练数据集内相同度量的聚类算法获得的,即级联前一阶段的低置信度分类样本。在参考的人脸数据测试集上进行了初步实验,取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信