Continuous wavelet transform of Schwartz distributions in 𝒟′(ℝ𝑛), 𝑛 ≤ 1

J. Pandey
{"title":"Continuous wavelet transform of Schwartz distributions in 𝒟′(ℝ𝑛), 𝑛 ≤ 1","authors":"J. Pandey","doi":"10.1515/anly-2021-0002","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we extend the continuous wavelet transform to Schwartz distributions in D ′ ⁢ ( R n ) \\mathcal{D}^{\\prime}(\\mathbb{R}^{n}) , n ≥ 1 n\\geq 1 , and derive the corresponding wavelet inversion formula (valid modulo a constant distribution) interpreting convergence in the weak distributional sense. The kernel of our wavelet transform is an element ψ ⁢ ( x ) \\psi(x) of D ⁢ ( R n ) \\mathcal{D}(\\mathbb{R}^{n}) , n ≥ 1 n\\geq 1 , which, when integrated along each of the real axes X 1 , X 2 , X 3 , … , X n X_{1},X_{2},X_{3},\\ldots,X_{n} vanishes, but none of its moments ∫ R n ψ ⁢ ( x ) ⁢ x m ⁢ d x \\int_{\\mathbb{R}^{n}}\\psi(x)x^{m}\\,dx is zero; here x m = x 1 m 1 ⁢ x 2 m 2 ⁢ … ⁢ x n m n x^{m}=x_{1}^{{m_{1}}}\\,x_{2}^{{m_{2}}}\\ldots x_{n}^{{m_{n}}} , d ⁢ x = d ⁢ x 1 ⁢ d ⁢ x 2 ⁢ … ⁢ d ⁢ x n dx=dx_{1}\\,dx_{2}\\ldots dx_{n} and m = ( m 1 , m 2 , … , m n ) m=(m_{1},m_{2},\\ldots,m_{n}) and each of m 1 , m 2 , … , m n m_{1},m_{2},\\ldots,m_{n} is at least 1. The set of such kernel will be denoted by D m ⁢ ( R n ) \\mathcal{D}_{m}(\\mathbb{R}^{n}) . But the uniqueness theorem for our wavelet inversion formula is valid for the space D F ′ ⁢ ( R n ) \\mathcal{D}_{F}^{\\prime}(\\mathbb{R}^{n}) obtained by filtering (deleting) (i) all non-zero constant distributions from the space D ′ ⁢ ( R n ) \\mathcal{D}^{\\prime}(\\mathbb{R}^{n}) , (ii) all non-zero constants that appear with a distribution as a union as for example for x 1 2 + x 2 2 + ⋯ ⁢ x n 2 1 + x 1 2 + x 2 2 + ⋯ ⁢ x n 2 = 1 - 1 1 + x 1 2 + x 2 2 + ⋯ ⁢ x n 2 \\frac{x_{1}^{2}+x_{2}^{2}+\\cdots x_{n}^{2}}{1+x_{1}^{2}+x_{2}^{2}+\\cdots x_{n}^{2}}=1-\\frac{1}{1+x_{1}^{2}+x_{2}^{2}+\\cdots x_{n}^{2}} , 1 is deleted and - 1 1 + x 1 2 + x 2 2 + ⋯ ⁢ x n 2 \\frac{-1}{1+x_{1}^{2}+x_{2}^{2}+\\cdots x_{n}^{2}} is retained.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"21 1","pages":"133 - 139"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2021-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we extend the continuous wavelet transform to Schwartz distributions in D ′ ⁢ ( R n ) \mathcal{D}^{\prime}(\mathbb{R}^{n}) , n ≥ 1 n\geq 1 , and derive the corresponding wavelet inversion formula (valid modulo a constant distribution) interpreting convergence in the weak distributional sense. The kernel of our wavelet transform is an element ψ ⁢ ( x ) \psi(x) of D ⁢ ( R n ) \mathcal{D}(\mathbb{R}^{n}) , n ≥ 1 n\geq 1 , which, when integrated along each of the real axes X 1 , X 2 , X 3 , … , X n X_{1},X_{2},X_{3},\ldots,X_{n} vanishes, but none of its moments ∫ R n ψ ⁢ ( x ) ⁢ x m ⁢ d x \int_{\mathbb{R}^{n}}\psi(x)x^{m}\,dx is zero; here x m = x 1 m 1 ⁢ x 2 m 2 ⁢ … ⁢ x n m n x^{m}=x_{1}^{{m_{1}}}\,x_{2}^{{m_{2}}}\ldots x_{n}^{{m_{n}}} , d ⁢ x = d ⁢ x 1 ⁢ d ⁢ x 2 ⁢ … ⁢ d ⁢ x n dx=dx_{1}\,dx_{2}\ldots dx_{n} and m = ( m 1 , m 2 , … , m n ) m=(m_{1},m_{2},\ldots,m_{n}) and each of m 1 , m 2 , … , m n m_{1},m_{2},\ldots,m_{n} is at least 1. The set of such kernel will be denoted by D m ⁢ ( R n ) \mathcal{D}_{m}(\mathbb{R}^{n}) . But the uniqueness theorem for our wavelet inversion formula is valid for the space D F ′ ⁢ ( R n ) \mathcal{D}_{F}^{\prime}(\mathbb{R}^{n}) obtained by filtering (deleting) (i) all non-zero constant distributions from the space D ′ ⁢ ( R n ) \mathcal{D}^{\prime}(\mathbb{R}^{n}) , (ii) all non-zero constants that appear with a distribution as a union as for example for x 1 2 + x 2 2 + ⋯ ⁢ x n 2 1 + x 1 2 + x 2 2 + ⋯ ⁢ x n 2 = 1 - 1 1 + x 1 2 + x 2 2 + ⋯ ⁢ x n 2 \frac{x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}}{1+x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}}=1-\frac{1}{1+x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}} , 1 is deleted and - 1 1 + x 1 2 + x 2 2 + ⋯ ⁢ x n 2 \frac{-1}{1+x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}} is retained.
(f)中Schwartz分布的连续小波变换,𝑛≤1
抽象在这个挑战》,这篇文章我们extend wavelet用金币到D′施瓦茨distributions里⁢(R n) D \ mathcal {} ^ {\ (prime的mathbb {R) ^ {n}), n≥1 n \ geq 1和derive the corresponding wavelet inversion公式(有效模a康斯坦distribution) interpreting集的《软弱distributional感。《内核of our wavelet用金币是一个元素ψ⁢(x) \ D⁢psi (x)》(R n) D mathcal {} (\ mathbb {R ^ {n}), n≥1的n \ geq 1,无关紧要,当集成每歌》真正的斧头x 1 x = 2,乘以3,... x n X_ {1}, X_ {2}, X_ {3} \ ldots, X_ {n,它的消失,但无人的时刻∫R nψ⁢m (x) x⁢⁢dx int_ {\ mathbb {R的n ^ {}} \ psi (x) x ^ {m的\,dx是零;这里x = x 1 m 1⁢×2米(6.5英尺)2⁢...⁢x n m x n ^ {} = {1} ^ x_ {{m_ {1}}} \, x_ {2} ^ {{m_ {2}}} \ ldots x_ {n} ^ {{m_ {n}}} 1, d d⁢x = x⁢⁢d⁢x = 2⁢...⁢d⁢x n dx = dx_ {1}, {2} dx_ \ ldots dx_ {n}和m = (1, m = 2, ... m n) = (m_ {1}, m_ {2} \ ldots m_ {n})》和每1,m 2, m n m_ {1} ... m_ {2}, \ ldots m_ {n}是至少1。如此之套内核威尔被D m⁢(denoted R的n) D \ mathcal {} {m的(R \ mathbb {} ^ {n})。但我们的无uniqueness定理wavelet inversion公式是有效的空间D F′⁢(R的n) D \ mathcal {} {} ^ {\ F撇号的(R \ mathbb {} ^ {n})获得由过滤(deleting) (i)条所有non-zero康斯坦distributions从《太空D′⁢(R n) D \ mathcal {} ^ {(prime的\ mathbb {R的n ^ {}),(ii)所有non-zero constants这出现在为操作for a distribution美国联合美国x 1 x = 2 + 2 +⋯⁢x n 2 + 1×1 + 2 + x = 2⋯⁢x n 2 = x - 1 + 1 = 2 + x = 2 + 2⋯⁢x n 2 \ frac {x_ {1} {2} ^ x_ {2} ^ {} + \ cdots x_ {n} ^ {2}} {1 + x_ {1} {2} ^ x_ {2} ^ {} + \ cdots x_ {} ^ {2}} = n + 1 - \ frac {1} {x_ {1} {2} ^ x_ {2} ^ {} + \ cdots x_ {n} ^{2}},是deleted和x - 1 + 1 + 2 + x = 2⋯⁢x n 2 \ frac {- 1} {1 + x_ {1} {2} ^ x_ {2} ^ {} + \ cdots x_ {n} ^{2}}是retained。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信