Detection and elimination of multicollinearity in regression analysis

IF 0.6 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Preeti Singh, Sarvpal H. Singh, M. Paprzycki
{"title":"Detection and elimination of multicollinearity in regression analysis","authors":"Preeti Singh, Sarvpal H. Singh, M. Paprzycki","doi":"10.3233/kes-221622","DOIUrl":null,"url":null,"abstract":"Multicollinearity occurs when there comes a high level of correlation between the independent variables. This correlation creates the problem because the independent variables should be independent. Higher the degree of correlation means more complex problems you will face while fitting the model and interpreting the results. In this paper, we have eliminated the problem of multicollinearity on the basis of Hatvalues. The variables with higher Hatvalues will be removed from the data before fitting the model. This paper presents the comparison of results achieved by the proposed technique and state of the art methods.","PeriodicalId":44076,"journal":{"name":"International Journal of Knowledge-Based and Intelligent Engineering Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Knowledge-Based and Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/kes-221622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Multicollinearity occurs when there comes a high level of correlation between the independent variables. This correlation creates the problem because the independent variables should be independent. Higher the degree of correlation means more complex problems you will face while fitting the model and interpreting the results. In this paper, we have eliminated the problem of multicollinearity on the basis of Hatvalues. The variables with higher Hatvalues will be removed from the data before fitting the model. This paper presents the comparison of results achieved by the proposed technique and state of the art methods.
回归分析中多重共线性的检测与消除
当自变量之间存在高度相关时,就会出现多重共线性。这种相关性产生了问题,因为自变量应该是独立的。相关性越高,意味着在拟合模型和解释结果时将面临更复杂的问题。在本文中,我们消除了基于hatvalue的多重共线性问题。在拟合模型之前,将具有较高hatvalue的变量从数据中删除。本文介绍了所提出的技术和目前最先进的方法取得的结果的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信