Modelling of Irreversible Homogeneous Reaction on Finite Diffusion Layers

Singaravel Anandhar Salai Sivasundari, R. Senthamarai, M. Devi, Lakshmanan Rajendran, M. Lyons
{"title":"Modelling of Irreversible Homogeneous Reaction on Finite Diffusion Layers","authors":"Singaravel Anandhar Salai Sivasundari, R. Senthamarai, M. Devi, Lakshmanan Rajendran, M. Lyons","doi":"10.3390/electrochem3030033","DOIUrl":null,"url":null,"abstract":"The mathematical model proposed by Chapman and Antano (Electrochimica Acta, 56 (2010), 128–132) for the catalytic electrochemical–chemical (EC’) processes in an irreversible second-order homogeneous reaction in a microelectrode is discussed. The mass-transfer boundary layer neighbouring an electrode can contribute to the electrode’s measured AC impedance. This model can be used to analyse membrane-transport studies and other instances of ionic transport in semiconductors and other materials. Two efficient and easily accessible analytical techniques, AGM and DTM, were used to solve the steady-state non-linear diffusion equation’s infinite layers. Herein, we present the generalized approximate analytical solution for the solute, product, and reactant concentrations and current for the small experimental values of kinetic and diffusion parameters. Using the Matlab/Scilab program, we also derive the numerical solution to this problem. The comparison of the analytical and numerical/computational results reveals a satisfactory level of agreement.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electrochem3030033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The mathematical model proposed by Chapman and Antano (Electrochimica Acta, 56 (2010), 128–132) for the catalytic electrochemical–chemical (EC’) processes in an irreversible second-order homogeneous reaction in a microelectrode is discussed. The mass-transfer boundary layer neighbouring an electrode can contribute to the electrode’s measured AC impedance. This model can be used to analyse membrane-transport studies and other instances of ionic transport in semiconductors and other materials. Two efficient and easily accessible analytical techniques, AGM and DTM, were used to solve the steady-state non-linear diffusion equation’s infinite layers. Herein, we present the generalized approximate analytical solution for the solute, product, and reactant concentrations and current for the small experimental values of kinetic and diffusion parameters. Using the Matlab/Scilab program, we also derive the numerical solution to this problem. The comparison of the analytical and numerical/computational results reveals a satisfactory level of agreement.
有限扩散层上不可逆均相反应的模拟
本文讨论了由Chapman和Antano (Electrochimica Acta, 56(2010), 128-132)提出的用于微电极中不可逆二阶均相反应的催化电化学-化学(EC)过程的数学模型。电极附近的传质边界层会影响电极的交流阻抗。该模型可用于分析薄膜传输研究以及半导体和其他材料中离子传输的其他实例。采用AGM和DTM两种高效、简便的分析技术,求解了稳态非线性扩散方程的无限层。本文给出了溶质、生成物、反应物浓度和电流对于动力学和扩散参数的小实验值的广义近似解析解。利用Matlab/Scilab程序,给出了该问题的数值解。分析结果与数值计算结果的比较显示出令人满意的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信