{"title":"Quantum Drift-Diffusion and Quantum Energy Balance simulation of nanowire junctionless transistors","authors":"O. Badami, N. Kumar, D. Saha, S. Ganguly","doi":"10.1109/SNW.2012.6243303","DOIUrl":null,"url":null,"abstract":"Multiple gate MOSFETs (MuGFET) have gained significant attention as the scaling of the conventional MOSFET comes to an end. Of the possible architectures, the gate-all-around nanowire (NW) transistor offers the best gate control over the channel. In order to model GAA nanowire devices for channel lengths less than 10nm, while preserving a connection to the drift-diffusion framework familiar to device engineers, we have developed a quantum-corrected transport simulator that includes Quantum Drift-Diffusion (QDD) and Quantum Energy Balance (QEB). This formalism is applied to the example of the NW junctionless transistor (JLT), an interesting modification to the NW-MOSFET obtained by replacing the n+-p-n+ structure by a bar of n+ region, that promises smaller variability.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"7 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple gate MOSFETs (MuGFET) have gained significant attention as the scaling of the conventional MOSFET comes to an end. Of the possible architectures, the gate-all-around nanowire (NW) transistor offers the best gate control over the channel. In order to model GAA nanowire devices for channel lengths less than 10nm, while preserving a connection to the drift-diffusion framework familiar to device engineers, we have developed a quantum-corrected transport simulator that includes Quantum Drift-Diffusion (QDD) and Quantum Energy Balance (QEB). This formalism is applied to the example of the NW junctionless transistor (JLT), an interesting modification to the NW-MOSFET obtained by replacing the n+-p-n+ structure by a bar of n+ region, that promises smaller variability.