Zijian Győző Yang, A. Agocs, Gábor Kusper, T. Váradi
{"title":"Abstractive text summarization for Hungarian","authors":"Zijian Győző Yang, A. Agocs, Gábor Kusper, T. Váradi","doi":"10.33039/AMI.2021.04.002","DOIUrl":null,"url":null,"abstract":"In our research we have created a text summarization software tool for Hungarian using multilingual and Hungarian BERT-based models. Two types of text summarization method exist: abstractive and extractive. The abstractive summarization is more similar to human generated summarization. Target summaries may include phrases that the original text does not necessarily contain. This method generates the summarized text by applying keywords that were extracted from the original text. The extractive method summarizes the text by using the most important extracted phrases or sentences from the original text. In our research we have built both abstractive and extractive models for Hungarian. For abstractive models, we have used a multilingual BERT model and Hungarian monolingual BERT models. For extractive summarization, in addition to the BERT models, we have also made experiments with ELECTRA models. We find that the Hungarian monolingual models outperformed the multilingual BERT model in all cases. Furthermore, the ELECTRA small models achieved higher results than some of the BERT models. This result is important because the ELECTRA small models have much fewer parameters and were trained on only 1 GPU within a couple of days. Another important consideration is that the ELECTRA models are much smaller than the BERT models, which is important for the end users. To our best knowledge the first extractive and abstractive summarization systems reported in the present paper are the first such systems for Hungarian.","PeriodicalId":8040,"journal":{"name":"Applied Medical Informaticvs","volume":"15 1","pages":"299-316"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Medical Informaticvs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/AMI.2021.04.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In our research we have created a text summarization software tool for Hungarian using multilingual and Hungarian BERT-based models. Two types of text summarization method exist: abstractive and extractive. The abstractive summarization is more similar to human generated summarization. Target summaries may include phrases that the original text does not necessarily contain. This method generates the summarized text by applying keywords that were extracted from the original text. The extractive method summarizes the text by using the most important extracted phrases or sentences from the original text. In our research we have built both abstractive and extractive models for Hungarian. For abstractive models, we have used a multilingual BERT model and Hungarian monolingual BERT models. For extractive summarization, in addition to the BERT models, we have also made experiments with ELECTRA models. We find that the Hungarian monolingual models outperformed the multilingual BERT model in all cases. Furthermore, the ELECTRA small models achieved higher results than some of the BERT models. This result is important because the ELECTRA small models have much fewer parameters and were trained on only 1 GPU within a couple of days. Another important consideration is that the ELECTRA models are much smaller than the BERT models, which is important for the end users. To our best knowledge the first extractive and abstractive summarization systems reported in the present paper are the first such systems for Hungarian.