{"title":"Tectonic strain in salt rock mass based on measurements","authors":"Z. Szczerbowski, Z. Niedbalski, L. Bednárek","doi":"10.7494/geol.2023.49.2.157","DOIUrl":null,"url":null,"abstract":"The measurement method with the application of an extensometer for the detection of the manifestation of tectonic strain is presented in this paper. The instrument is operated in underground construction for engineering purposes, and the authors applied it in a deeply placed underground old mine gallery in the Bochnia Salt Mine, just at the tectonic boundary of the Outer Carpathians which is commonly considered to be a tectonically active zone. The presented study is characterized by two basic features. The first is the placement of the measurements deep in an old mine which is an environment free of atmospheric factors disturbing the detection of a tectonic signal. The second is a combination of routine measurements carried out for engineering purposes and research measurements enabling the extension of the observation of displacements in the space outside underground workings, inside the rock mass that has been penetrated by extensometer probes. The extensometric measurements have been made using three 7-meter long sections. The results showed the differentiation in the displacement rates of points placed in the side walls: in the southern profile, the annual displacements are approximately 1.5 mm and in the northern one – approximately 1 mm. The combined result corresponds to the amount of the annual convergence value which has been determined by the classical surveys in the excavation where extensometric measurements have been made. What is more, the ongoing displacements in the southern side wall involve the entire part of the rock mass which is penetrated by an extensometric probe, but the displacements in the northern side are only observed in the first 2 m of the penetrated part of the rock mass. This differentiation is interpreted by the authors as being the result of tectonic strain acting from the south exerted by the Carpathians.","PeriodicalId":12724,"journal":{"name":"Geology, Geophysics and Environment","volume":"4 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology, Geophysics and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/geol.2023.49.2.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The measurement method with the application of an extensometer for the detection of the manifestation of tectonic strain is presented in this paper. The instrument is operated in underground construction for engineering purposes, and the authors applied it in a deeply placed underground old mine gallery in the Bochnia Salt Mine, just at the tectonic boundary of the Outer Carpathians which is commonly considered to be a tectonically active zone. The presented study is characterized by two basic features. The first is the placement of the measurements deep in an old mine which is an environment free of atmospheric factors disturbing the detection of a tectonic signal. The second is a combination of routine measurements carried out for engineering purposes and research measurements enabling the extension of the observation of displacements in the space outside underground workings, inside the rock mass that has been penetrated by extensometer probes. The extensometric measurements have been made using three 7-meter long sections. The results showed the differentiation in the displacement rates of points placed in the side walls: in the southern profile, the annual displacements are approximately 1.5 mm and in the northern one – approximately 1 mm. The combined result corresponds to the amount of the annual convergence value which has been determined by the classical surveys in the excavation where extensometric measurements have been made. What is more, the ongoing displacements in the southern side wall involve the entire part of the rock mass which is penetrated by an extensometric probe, but the displacements in the northern side are only observed in the first 2 m of the penetrated part of the rock mass. This differentiation is interpreted by the authors as being the result of tectonic strain acting from the south exerted by the Carpathians.