J. W. Vieira, Pedro Henrique Avelino Andrade, A. C. H. Oliveira, V. Lima, Isabelle Viviane Batista de Lacerda, Arykerne Casado Silva, Ivan Eufrázio Santana, Whoody Alem Wanderley Farias, Larissa Cristina Silva dos Santos, Fernanda Gonçalves Oliveira, F. Lima
{"title":"Development of anthropomorphic computational phantoms at the UFPE","authors":"J. W. Vieira, Pedro Henrique Avelino Andrade, A. C. H. Oliveira, V. Lima, Isabelle Viviane Batista de Lacerda, Arykerne Casado Silva, Ivan Eufrázio Santana, Whoody Alem Wanderley Farias, Larissa Cristina Silva dos Santos, Fernanda Gonçalves Oliveira, F. Lima","doi":"10.15392/2319-0612.2023.2243","DOIUrl":null,"url":null,"abstract":"To evaluate the amount of energy deposited in radiosensitive organs and tissues of the human body, when an anthropomorphic phantom is irradiated, researchers in numerical dosimetry use the so-called exposure computational models (ECMs). One can imagine an ECM as a virtual scene composed of a phantom in a mathematically defined position in relation to a radioactive source. The source in these ECMs produces the initial state of the simulation: the position, direction, and energy with which each particle enters the phantom are essential variables. For subsequent states of a particle history, robust Monte Carlo (MC) codes are used. For the subsequent states of a particle's history, robust Monte Carlo (MC) codes are used, which simulate the average free path that the particle performs without interacting, its interaction with the atoms in the medium and the amount of energy deposited per interaction. MC codes also evaluate normalization quantities, so the results are printed in text files in the form of conversion coefficients between the absorbed dose and the selected normalization quantity. From the 2000s, the authors have published ECMs where a voxel phantom is irradiated by photons in the environment of the MC code EGSnrc (EGS = Electron Gamma Shower; nrc = National Research Council Canada). The production of articles, dissertations and theses required the use of specific computational tools, such as the FANTOMAS, DIP (Digital Image Processing) and Monte Carlo applications, for the various steps of numerical dosimetry, which ranges from the preparation of input files to the execution from the ECM to the organization and graphical and numerical analysis of the results. This article reviews computational phantoms for dosimetry mainly those produced in DEN-UFPE dissertations and thesis.","PeriodicalId":9203,"journal":{"name":"Brazilian Journal of Radiation Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Radiation Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15392/2319-0612.2023.2243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To evaluate the amount of energy deposited in radiosensitive organs and tissues of the human body, when an anthropomorphic phantom is irradiated, researchers in numerical dosimetry use the so-called exposure computational models (ECMs). One can imagine an ECM as a virtual scene composed of a phantom in a mathematically defined position in relation to a radioactive source. The source in these ECMs produces the initial state of the simulation: the position, direction, and energy with which each particle enters the phantom are essential variables. For subsequent states of a particle history, robust Monte Carlo (MC) codes are used. For the subsequent states of a particle's history, robust Monte Carlo (MC) codes are used, which simulate the average free path that the particle performs without interacting, its interaction with the atoms in the medium and the amount of energy deposited per interaction. MC codes also evaluate normalization quantities, so the results are printed in text files in the form of conversion coefficients between the absorbed dose and the selected normalization quantity. From the 2000s, the authors have published ECMs where a voxel phantom is irradiated by photons in the environment of the MC code EGSnrc (EGS = Electron Gamma Shower; nrc = National Research Council Canada). The production of articles, dissertations and theses required the use of specific computational tools, such as the FANTOMAS, DIP (Digital Image Processing) and Monte Carlo applications, for the various steps of numerical dosimetry, which ranges from the preparation of input files to the execution from the ECM to the organization and graphical and numerical analysis of the results. This article reviews computational phantoms for dosimetry mainly those produced in DEN-UFPE dissertations and thesis.