Development of anthropomorphic computational phantoms at the UFPE

J. W. Vieira, Pedro Henrique Avelino Andrade, A. C. H. Oliveira, V. Lima, Isabelle Viviane Batista de Lacerda, Arykerne Casado Silva, Ivan Eufrázio Santana, Whoody Alem Wanderley Farias, Larissa Cristina Silva dos Santos, Fernanda Gonçalves Oliveira, F. Lima
{"title":"Development of anthropomorphic computational phantoms at the UFPE","authors":"J. W. Vieira, Pedro Henrique Avelino Andrade, A. C. H. Oliveira, V. Lima, Isabelle Viviane Batista de Lacerda, Arykerne Casado Silva, Ivan Eufrázio Santana, Whoody Alem Wanderley Farias, Larissa Cristina Silva dos Santos, Fernanda Gonçalves Oliveira, F. Lima","doi":"10.15392/2319-0612.2023.2243","DOIUrl":null,"url":null,"abstract":"To evaluate the amount of energy deposited in radiosensitive organs and tissues of the human body, when an anthropomorphic phantom is irradiated, researchers in numerical dosimetry use the so-called exposure computational models (ECMs). One can imagine an ECM as a virtual scene composed of a phantom in a mathematically defined position in relation to a radioactive source. The source in these ECMs produces the initial state of the simulation:  the position, direction, and energy with which each particle enters the phantom are essential variables. For subsequent states of a particle history, robust Monte Carlo (MC) codes are used. For the subsequent states of a particle's history, robust Monte Carlo (MC) codes are used, which simulate the average free path that the particle performs without interacting, its interaction with the atoms in the medium and the amount of energy deposited per interaction. MC codes also evaluate normalization quantities, so the results are printed in text files in the form of conversion coefficients between the absorbed dose and the selected normalization quantity. From the 2000s, the authors have published ECMs where a voxel phantom is irradiated by photons in the environment of the MC code EGSnrc (EGS = Electron Gamma Shower; nrc = National Research Council Canada). The production of articles, dissertations and theses required the use of specific computational tools, such as the FANTOMAS, DIP (Digital Image Processing) and Monte Carlo applications, for the various steps of numerical dosimetry, which ranges from the preparation of input files to the execution from the ECM to the organization and graphical and numerical analysis of the results. This article reviews computational phantoms for dosimetry mainly those produced in DEN-UFPE dissertations and thesis.","PeriodicalId":9203,"journal":{"name":"Brazilian Journal of Radiation Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Radiation Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15392/2319-0612.2023.2243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To evaluate the amount of energy deposited in radiosensitive organs and tissues of the human body, when an anthropomorphic phantom is irradiated, researchers in numerical dosimetry use the so-called exposure computational models (ECMs). One can imagine an ECM as a virtual scene composed of a phantom in a mathematically defined position in relation to a radioactive source. The source in these ECMs produces the initial state of the simulation:  the position, direction, and energy with which each particle enters the phantom are essential variables. For subsequent states of a particle history, robust Monte Carlo (MC) codes are used. For the subsequent states of a particle's history, robust Monte Carlo (MC) codes are used, which simulate the average free path that the particle performs without interacting, its interaction with the atoms in the medium and the amount of energy deposited per interaction. MC codes also evaluate normalization quantities, so the results are printed in text files in the form of conversion coefficients between the absorbed dose and the selected normalization quantity. From the 2000s, the authors have published ECMs where a voxel phantom is irradiated by photons in the environment of the MC code EGSnrc (EGS = Electron Gamma Shower; nrc = National Research Council Canada). The production of articles, dissertations and theses required the use of specific computational tools, such as the FANTOMAS, DIP (Digital Image Processing) and Monte Carlo applications, for the various steps of numerical dosimetry, which ranges from the preparation of input files to the execution from the ECM to the organization and graphical and numerical analysis of the results. This article reviews computational phantoms for dosimetry mainly those produced in DEN-UFPE dissertations and thesis.
在upe拟人化计算幻影的发展
为了评估在人体的辐射敏感器官和组织中沉积的能量,当一个拟人化的幻影被照射时,数值剂量学的研究人员使用了所谓的暴露计算模型(ecm)。我们可以把ECM想象成一个虚拟场景,由一个与放射源相关的数学定义位置的幻影组成。这些ecm中的源产生模拟的初始状态:每个粒子进入幻影的位置、方向和能量是基本变量。对于粒子历史的后续状态,采用鲁棒蒙特卡罗(MC)码。对于粒子历史的后续状态,使用鲁棒蒙特卡罗(MC)代码,模拟粒子在没有相互作用的情况下的平均自由路径,它与介质中原子的相互作用以及每次相互作用所沉积的能量。MC代码还评估归一化量,因此结果以吸收剂量与所选归一化量之间的转换系数的形式打印在文本文件中。从2000年代开始,作者发表了ecm,其中体素幻影在MC代码EGSnrc (EGS = Electron Gamma Shower;加拿大国家研究委员会。文章、论文和论文的制作需要使用特定的计算工具,如FANTOMAS、DIP(数字图像处理)和蒙特卡罗应用程序,用于数值剂量学的各个步骤,从准备输入文件到执行ECM,再到组织和结果的图形和数值分析。本文主要综述了DEN-UFPE学位论文和论文中有关剂量学的计算模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信