A Comparison of Ambient Air Ethylene Oxide Modeling Estimates from Facility Stack and Fugitive Emissions to Canister-Based Ambient Air Measurements in Salt Lake City
IF 4.3 2区 环境科学与生态学Q1 CONSTRUCTION & BUILDING TECHNOLOGY
S. B. Spooner, Rod Handy, Nancy Daher, R. Edie, Trenton D. Henry, Darrah K. Sleeth
{"title":"A Comparison of Ambient Air Ethylene Oxide Modeling Estimates from Facility Stack and Fugitive Emissions to Canister-Based Ambient Air Measurements in Salt Lake City","authors":"S. B. Spooner, Rod Handy, Nancy Daher, R. Edie, Trenton D. Henry, Darrah K. Sleeth","doi":"10.3390/air1030013","DOIUrl":null,"url":null,"abstract":"Ethylene oxide (EtO) is a colorless, flammable gas at room temperature produced by the catalytic oxidation of ethylene. EtO is widely used by medical sterilization facilities to clean medical supplies and equipment. Recent epidemiological studies showed that EtO is a more potent carcinogen than previously documented, leading the Environmental Protection Agency (EPA) to update, in December 2016, the inhalation unit risk estimate for EtO. This resulted in the identification of EtO as a potential health concern in several areas across the US, including the state of Utah. The geography surrounding Salt Lake Valley creates a bowl, which is ideal for collecting air pollution emissions. The region often experiences inversion episodes which inhibit vertical mixing and cause an accumulation of air pollutants, leading to unhealthy pollution levels. Using the EPA’s dispersion modeling software, AERMOD, this study estimated EtO concentrations through facility stack and fugitive emissions modeling results. These values were compared with those of canister-based concentrations from ambient air samples taken near a medical device sterilization facility in Salt Lake Valley. Stainless steel whole-air passivated canisters were used to collect 24 h ambient concentration samples of EtO. Eight locations surrounding a Salt Lake Valley medical device sterilization facility and four background sites were chosen to measure the ambient concentrations. Accounting for potential atmospheric impacts on EtO, measurements were sampled in winter 2022 (January–March) and summer 2022 (July–September). The modeled EtO concentrations were adjusted to account for background values associated with the winter or summer data. Then, the two methodologies were compared using a Wilcoxon signed-ranked paired test. The statistical analysis resulted in six of the eight sample locations surrounding the sterilization facility being significantly different when comparing the canister-based measurements of ambient EtO to modeled estimates. Canister-based measurements taken at sites one, three, and four were statistically greater than the modeled estimates, while sites two, five, and seven were statistically less than the modeled estimates. Also, the summer background value calculated was almost 2.5 times greater than the winter one. The results do not suggest whether one method is more or less conservative than the other. In conclusion, the five of the closest sites and site seven were statistically different when comparing measured and modeled ambient concentrations of EtO. The comparison results do not clearly indicate if a correction factor could be derived for future human exposure to cancer risk assessment modeling. However, it is reasonable that the closer to the sterilization facility, the more total EtO exposure will be realized.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"64 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/air1030013","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ethylene oxide (EtO) is a colorless, flammable gas at room temperature produced by the catalytic oxidation of ethylene. EtO is widely used by medical sterilization facilities to clean medical supplies and equipment. Recent epidemiological studies showed that EtO is a more potent carcinogen than previously documented, leading the Environmental Protection Agency (EPA) to update, in December 2016, the inhalation unit risk estimate for EtO. This resulted in the identification of EtO as a potential health concern in several areas across the US, including the state of Utah. The geography surrounding Salt Lake Valley creates a bowl, which is ideal for collecting air pollution emissions. The region often experiences inversion episodes which inhibit vertical mixing and cause an accumulation of air pollutants, leading to unhealthy pollution levels. Using the EPA’s dispersion modeling software, AERMOD, this study estimated EtO concentrations through facility stack and fugitive emissions modeling results. These values were compared with those of canister-based concentrations from ambient air samples taken near a medical device sterilization facility in Salt Lake Valley. Stainless steel whole-air passivated canisters were used to collect 24 h ambient concentration samples of EtO. Eight locations surrounding a Salt Lake Valley medical device sterilization facility and four background sites were chosen to measure the ambient concentrations. Accounting for potential atmospheric impacts on EtO, measurements were sampled in winter 2022 (January–March) and summer 2022 (July–September). The modeled EtO concentrations were adjusted to account for background values associated with the winter or summer data. Then, the two methodologies were compared using a Wilcoxon signed-ranked paired test. The statistical analysis resulted in six of the eight sample locations surrounding the sterilization facility being significantly different when comparing the canister-based measurements of ambient EtO to modeled estimates. Canister-based measurements taken at sites one, three, and four were statistically greater than the modeled estimates, while sites two, five, and seven were statistically less than the modeled estimates. Also, the summer background value calculated was almost 2.5 times greater than the winter one. The results do not suggest whether one method is more or less conservative than the other. In conclusion, the five of the closest sites and site seven were statistically different when comparing measured and modeled ambient concentrations of EtO. The comparison results do not clearly indicate if a correction factor could be derived for future human exposure to cancer risk assessment modeling. However, it is reasonable that the closer to the sterilization facility, the more total EtO exposure will be realized.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.