Evolutionary-Reduced Ordered Binary Decision Diagram

Hossein Moeinzadeh, M. Mohammadi, Hossein Pazhoumand-dar, Arman Mehrbakhsh, Navid Kheibar, N. Mozayani
{"title":"Evolutionary-Reduced Ordered Binary Decision Diagram","authors":"Hossein Moeinzadeh, M. Mohammadi, Hossein Pazhoumand-dar, Arman Mehrbakhsh, Navid Kheibar, N. Mozayani","doi":"10.1109/AMS.2009.130","DOIUrl":null,"url":null,"abstract":"Reduced ordered binary decision diagram (ROBDD) is a memory-efficient data structure which is used in many applications such as synthesis, digital system, verification, testing and VLSI-CAD. The size of an ROBDD for a function can be increased exponentially by the number of independent variables of the function that is called “memory explosion problem”. The choice of the variable ordering largely influences the size of the OBDD especially for large input variables. Finding the optimal variable ordering is an NP-complete problem, hence, in this paper, two evolutionary methods (GA and PSO) are used to find optimal order of input variable in binary decision diagram. Some benchmarks form LGSynth91 are used to evaluate our suggestion methods. Obtained results show that evolutionary methods have the ability to find optimal order of input variable and reduce the size of ROBDD considerably.","PeriodicalId":6461,"journal":{"name":"2009 Third Asia International Conference on Modelling & Simulation","volume":"15 1","pages":"142-145"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third Asia International Conference on Modelling & Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2009.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Reduced ordered binary decision diagram (ROBDD) is a memory-efficient data structure which is used in many applications such as synthesis, digital system, verification, testing and VLSI-CAD. The size of an ROBDD for a function can be increased exponentially by the number of independent variables of the function that is called “memory explosion problem”. The choice of the variable ordering largely influences the size of the OBDD especially for large input variables. Finding the optimal variable ordering is an NP-complete problem, hence, in this paper, two evolutionary methods (GA and PSO) are used to find optimal order of input variable in binary decision diagram. Some benchmarks form LGSynth91 are used to evaluate our suggestion methods. Obtained results show that evolutionary methods have the ability to find optimal order of input variable and reduce the size of ROBDD considerably.
进化约简有序二元决策图
降阶二值决策图(ROBDD)是一种节省内存的数据结构,广泛应用于合成、数字系统、验证、测试和VLSI-CAD等领域。一个函数的ROBDD的大小可以通过函数的自变量的数量呈指数增长,这被称为“内存爆炸问题”。变量排序的选择在很大程度上影响OBDD的大小,特别是对于大的输入变量。寻找最优变量排序是一个np完全问题,因此,本文采用遗传算法和粒子群算法两种进化方法来寻找二元决策图中输入变量的最优排序。一些来自LGSynth91的基准测试被用来评估我们的建议方法。结果表明,进化方法能够找到输入变量的最优顺序,并显著减小了ROBDD的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信