Ranhee Park, S. Lim, Sun-ho Han, Min Young Lee, Jinkyu Park, Chi-Gyu Lee, K. Song
{"title":"Improvement of Measurement Precisions for Uranium Isotopes at Ultra Trace Levels by Modification of the Sample Introduction System in MC-ICP-MS","authors":"Ranhee Park, S. Lim, Sun-ho Han, Min Young Lee, Jinkyu Park, Chi-Gyu Lee, K. Song","doi":"10.5478/MSL.2016.7.2.50","DOIUrl":null,"url":null,"abstract":": Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is currently used in our laboratory for isotopic and quantitative analyses of nuclear materials at ultra-trace levels in environmental swipe samples, which is a very useful for monitoring undeclared nuclear activities. In this study, to improve measurement precisions of uranium isotopes at ultra-trace levels, we adopted a desolvating nebulizer system (Aridus-II, CETAC., USA), which can improve signal sensitivity and reduce formation of uranium hydride. A peristaltic pump was combined with Aridus-II in the sample introduction system of MC-ICP-MS to reduce long-term signal fluctuations by maintaining a constant flow rate of the sample solution. The signal sensitivity in the presence of Aridus-II was improved more than 10-fold and the formation ratio of UH/U decreased by 16- to 17-fold compared to a normal spray chamber. Long-term signal fluctuations were significantly reduced by using the peristaltic pump. Detailed optimizations and evaluations with uranium standards are also discussed in this paper.","PeriodicalId":18238,"journal":{"name":"Mass Spectrometry Letters","volume":"6 1","pages":"50-54"},"PeriodicalIF":0.4000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass Spectrometry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5478/MSL.2016.7.2.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 3
Abstract
: Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is currently used in our laboratory for isotopic and quantitative analyses of nuclear materials at ultra-trace levels in environmental swipe samples, which is a very useful for monitoring undeclared nuclear activities. In this study, to improve measurement precisions of uranium isotopes at ultra-trace levels, we adopted a desolvating nebulizer system (Aridus-II, CETAC., USA), which can improve signal sensitivity and reduce formation of uranium hydride. A peristaltic pump was combined with Aridus-II in the sample introduction system of MC-ICP-MS to reduce long-term signal fluctuations by maintaining a constant flow rate of the sample solution. The signal sensitivity in the presence of Aridus-II was improved more than 10-fold and the formation ratio of UH/U decreased by 16- to 17-fold compared to a normal spray chamber. Long-term signal fluctuations were significantly reduced by using the peristaltic pump. Detailed optimizations and evaluations with uranium standards are also discussed in this paper.