{"title":"Two-photon superbunching effect of broadband chaotic light at the femtosecond timescale based on a cascaded Michelson interferometer","authors":"Sheng Luo, Yu Zhou, Huaibin Zheng, Jianbin Liu, Hui Chen, Yuchen He, Wanting Xu, Shuanghao Zhang, Fuli Li, Zhuo Xu","doi":"10.1103/PHYSREVA.103.013723","DOIUrl":null,"url":null,"abstract":"It is challenging for observing superbunching effect with true chaotic light, here we propose and demonstrate a method to achieve superbunching effect of the degree of second-order coherence is 2.42 with broadband stationary chaotic light based on a cascaded Michelson interferometer (CMI), exceeding the theoretical upper limit of 2 for the two-photon bunching effect of chaotic light. The superbunching correlation peak is measured with an ultrafast two-photon absorption detector which the full width at half maximum reaches about 95 fs. Two-photon superbunching theory in a CMI is developed to interpret the effect and is in agreement with experimental results. The theory also predicts that the degree of second-order coherence can be much greater than $2$ if chaotic light propagates $N$ times in a CMI. Finally, a new type of weak signals detection setup which employs broadband chaotic light circulating in a CMI is proposed. Theoretically, it can increase the detection sensitivity of weak signals 79 times after the chaotic light circulating 100 times in the CMI.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVA.103.013723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
It is challenging for observing superbunching effect with true chaotic light, here we propose and demonstrate a method to achieve superbunching effect of the degree of second-order coherence is 2.42 with broadband stationary chaotic light based on a cascaded Michelson interferometer (CMI), exceeding the theoretical upper limit of 2 for the two-photon bunching effect of chaotic light. The superbunching correlation peak is measured with an ultrafast two-photon absorption detector which the full width at half maximum reaches about 95 fs. Two-photon superbunching theory in a CMI is developed to interpret the effect and is in agreement with experimental results. The theory also predicts that the degree of second-order coherence can be much greater than $2$ if chaotic light propagates $N$ times in a CMI. Finally, a new type of weak signals detection setup which employs broadband chaotic light circulating in a CMI is proposed. Theoretically, it can increase the detection sensitivity of weak signals 79 times after the chaotic light circulating 100 times in the CMI.