Encrypted optical fiber tag based on encoded fiber Bragg grating array

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Zhihao Cai, Bozhe Li, Zhiyong Bai, Dejun Liu, Kaiming Yang, Bonan Liu, Cong Zhao, Mengqiang Zou, Jie Zhou, Shan Jiang, Jingyi Huang, Li Liu, Xuming Zhang, Junle Qu, Yiping Wang, C. Liao
{"title":"Encrypted optical fiber tag based on encoded fiber Bragg grating array","authors":"Zhihao Cai, Bozhe Li, Zhiyong Bai, Dejun Liu, Kaiming Yang, Bonan Liu, Cong Zhao, Mengqiang Zou, Jie Zhou, Shan Jiang, Jingyi Huang, Li Liu, Xuming Zhang, Junle Qu, Yiping Wang, C. Liao","doi":"10.1088/2631-7990/acd825","DOIUrl":null,"url":null,"abstract":"Optical fibers are typically used in telecommunications services for data transmission, where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the working functionality of the communication system. Traditional physical entity marking methods for fiber labeling are bulky, easily confused, and, most importantly, the label information can be accessed easily by all potential users. This work proposes an encrypted optical fiber tag based on an encoded fiber Bragg grating (FBG) array that is fabricated using a point-by-point femtosecond laser pulse chain inscription method. Gratings with different resonant wavelengths and reflectivities are realized by adjusting the grating period and the refractive index modulations. It is demonstrated that a binary data sequence carried by a fiber tag can be inscribed into the fiber core in the form of an FBG array, and the tag data can be encrypted through appropriate design of the spatial distributions of the FBGs with various reflection wavelengths and reflectivities. The proposed fiber tag technology can be used for applications in port identification, encrypted data storage, and transmission in fiber networks.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"6 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acd825","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

Abstract

Optical fibers are typically used in telecommunications services for data transmission, where the use of fiber tags is essential to distinguish between the different transmission fibers or channels and thus ensure the working functionality of the communication system. Traditional physical entity marking methods for fiber labeling are bulky, easily confused, and, most importantly, the label information can be accessed easily by all potential users. This work proposes an encrypted optical fiber tag based on an encoded fiber Bragg grating (FBG) array that is fabricated using a point-by-point femtosecond laser pulse chain inscription method. Gratings with different resonant wavelengths and reflectivities are realized by adjusting the grating period and the refractive index modulations. It is demonstrated that a binary data sequence carried by a fiber tag can be inscribed into the fiber core in the form of an FBG array, and the tag data can be encrypted through appropriate design of the spatial distributions of the FBGs with various reflection wavelengths and reflectivities. The proposed fiber tag technology can be used for applications in port identification, encrypted data storage, and transmission in fiber networks.
基于编码光纤光栅阵列的加密光纤标签
光纤通常用于电信业务中的数据传输,其中使用光纤标签是区分不同传输光纤或通道的必要条件,从而确保通信系统的工作功能。传统的光纤标签物理实体标记方法体积庞大,容易混淆,最重要的是,标签信息可以被所有潜在用户轻松访问。本文提出了一种基于编码光纤布拉格光栅(FBG)阵列的加密光纤标签,该标签采用逐点飞秒激光脉冲链铭刻方法制造。通过调整光栅周期和折射率调制,可以实现不同谐振波长和反射率的光栅。结果表明,光纤标签所携带的二进制数据序列可以以光纤光栅阵列的形式嵌入光纤芯中,通过适当设计不同反射波长和反射率的光纤光栅的空间分布,可以对标签数据进行加密。提出的光纤标签技术可用于光纤网络中的端口识别、加密数据存储和传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信