Noise-Assisted Quantum Autoencoder

Chenfeng Cao, Xin Wang
{"title":"Noise-Assisted Quantum Autoencoder","authors":"Chenfeng Cao, Xin Wang","doi":"10.1103/PhysRevApplied.15.054012","DOIUrl":null,"url":null,"abstract":"Quantum autoencoder is an efficient variational quantum algorithm for quantum data compression. However, previous quantum autoencoders fail to compress and recover high-rank mixed states. In this work, we discuss the fundamental properties and limitations of the standard quantum autoencoder model in more depth, and provide an information-theoretic solution to its recovering fidelity. Based on this understanding, we present a noise-assisted quantum autoencoder algorithm to go beyond the limitations, our model can achieve high recovering fidelity for general input states. Appropriate noise channels are used to make the input mixedness and output mixedness consistent, the noise setup is determined by measurement results of the trash system. Compared with the original quantum autoencoder model, the measurement information is fully used in our algorithm. In addition to the circuit model, we design a (noise-assisted) adiabatic model of quantum autoencoder that can be implemented on quantum annealers. We verified the validity of our methods through compressing the thermal states of transverse field Ising model. For pure state ensemble compression, we also introduce a projected quantum autoencoder algorithm. Our models have wide applications for quantum data compression on near-term quantum devices.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevApplied.15.054012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Quantum autoencoder is an efficient variational quantum algorithm for quantum data compression. However, previous quantum autoencoders fail to compress and recover high-rank mixed states. In this work, we discuss the fundamental properties and limitations of the standard quantum autoencoder model in more depth, and provide an information-theoretic solution to its recovering fidelity. Based on this understanding, we present a noise-assisted quantum autoencoder algorithm to go beyond the limitations, our model can achieve high recovering fidelity for general input states. Appropriate noise channels are used to make the input mixedness and output mixedness consistent, the noise setup is determined by measurement results of the trash system. Compared with the original quantum autoencoder model, the measurement information is fully used in our algorithm. In addition to the circuit model, we design a (noise-assisted) adiabatic model of quantum autoencoder that can be implemented on quantum annealers. We verified the validity of our methods through compressing the thermal states of transverse field Ising model. For pure state ensemble compression, we also introduce a projected quantum autoencoder algorithm. Our models have wide applications for quantum data compression on near-term quantum devices.
噪声辅助量子自编码器
量子自编码器是一种有效的量子数据压缩变分量子算法。然而,以往的量子自编码器无法压缩和恢复高阶混合态。在这项工作中,我们更深入地讨论了标准量子自编码器模型的基本特性和局限性,并提供了一个恢复保真度的信息理论解决方案。基于这种理解,我们提出了一种噪声辅助量子自编码器算法,该算法可以突破限制,对一般输入状态达到较高的恢复保真度。采用适当的噪声通道使输入混合度和输出混合度保持一致,根据垃圾系统的测量结果确定噪声设置。与原有的量子自编码器模型相比,我们的算法充分利用了测量信息。除了电路模型外,我们还设计了一个可在量子退火炉上实现的量子自编码器(噪声辅助)绝热模型。通过压缩横向场Ising模型的热态,验证了方法的有效性。对于纯态集成压缩,我们还引入了一种投影量子自编码器算法。我们的模型在近期量子设备的量子数据压缩方面有广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信