Pointer chasing via triangular discrimination

A. Yehudayoff
{"title":"Pointer chasing via triangular discrimination","authors":"A. Yehudayoff","doi":"10.1017/S0963548320000085","DOIUrl":null,"url":null,"abstract":"Abstract We prove an essentially sharp \n$\\tilde \\Omega (n/k)$\n lower bound on the k-round distributional complexity of the k-step pointer chasing problem under the uniform distribution, when Bob speaks first. This is an improvement over Nisan and Wigderson’s \n$\\tilde \\Omega (n/{k^2})$\n lower bound, and essentially matches the randomized lower bound proved by Klauck. The proof is information-theoretic, and a key part of it is using asymmetric triangular discrimination instead of total variation distance; this idea may be useful elsewhere.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Abstract We prove an essentially sharp $\tilde \Omega (n/k)$ lower bound on the k-round distributional complexity of the k-step pointer chasing problem under the uniform distribution, when Bob speaks first. This is an improvement over Nisan and Wigderson’s $\tilde \Omega (n/{k^2})$ lower bound, and essentially matches the randomized lower bound proved by Klauck. The proof is information-theoretic, and a key part of it is using asymmetric triangular discrimination instead of total variation distance; this idea may be useful elsewhere.
指针追逐通过三角辨别
摘要证明了均匀分布下,当Bob先发言时,k步指针追逐问题的k轮分布复杂度的一个本质上尖锐的$\tilde \Omega (n/k)$下界。这是对Nisan和Wigderson的$\tilde \Omega (n/{k^2})$下界的改进,基本上与Klauck证明的随机下界相匹配。证明是信息论的,关键是用不对称三角判别代替总变异距离;这个想法可能在其他地方有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信