Drinfeld centers of fusion categories arising from generalized Haagerup subfactors

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2015-01-30 DOI:10.4171/qt/167
Pinhas Grossman, Masaki Izumi
{"title":"Drinfeld centers of fusion categories arising from generalized Haagerup subfactors","authors":"Pinhas Grossman, Masaki Izumi","doi":"10.4171/qt/167","DOIUrl":null,"url":null,"abstract":"We consider generalized Haagerup categories such that $1 \\oplus X$ admits a $Q$-system for every non-invertible simple object $X$. We show that in such a category, the group of order two invertible objects has size at most four. We describe the simple objects of the Drinfeld center and give partial formulas for the modular data. We compute the remaining corner of the modular data for several examples and make conjectures about the general case. We also consider several types of equivariantizations and de-equivariantizations of generalized Haagerup categories and describe their Drinfeld centers. \nIn particular, we compute the modular data for the Drinfeld centers of a number of examples of fusion categories arising in the classification of small-index subfactors: the Asaeda-Haagerup subfactor; the $3^{\\Z_4} $ and $3^{\\Z_2 \\times \\Z_2} $ subfactors; the $2D2$ subfactor; and the $4442$ subfactor. \nThe results suggest the possibility of several new infinite families of quadratic categories. A description and generalization of the modular data associated to these families in terms of pairs of metric groups is taken up in the accompanying paper \\cite{GI19_2}.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"94 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2015-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/qt/167","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We consider generalized Haagerup categories such that $1 \oplus X$ admits a $Q$-system for every non-invertible simple object $X$. We show that in such a category, the group of order two invertible objects has size at most four. We describe the simple objects of the Drinfeld center and give partial formulas for the modular data. We compute the remaining corner of the modular data for several examples and make conjectures about the general case. We also consider several types of equivariantizations and de-equivariantizations of generalized Haagerup categories and describe their Drinfeld centers. In particular, we compute the modular data for the Drinfeld centers of a number of examples of fusion categories arising in the classification of small-index subfactors: the Asaeda-Haagerup subfactor; the $3^{\Z_4} $ and $3^{\Z_2 \times \Z_2} $ subfactors; the $2D2$ subfactor; and the $4442$ subfactor. The results suggest the possibility of several new infinite families of quadratic categories. A description and generalization of the modular data associated to these families in terms of pairs of metric groups is taken up in the accompanying paper \cite{GI19_2}.
广义Haagerup子因子引起的融合范畴的Drinfeld中心
我们考虑广义haagup范畴,使得$1 \oplus X$对于每一个不可逆的简单物体$X$都承认一个$Q$ -系统。我们证明了在这样一个范畴中,二阶可逆对象群的大小最多为4。我们描述了德林菲尔德中心的简单对象,并给出了模数据的部分公式。我们计算了几个例子的模块化数据的剩余角,并对一般情况进行了推测。我们还考虑了广义Haagerup范畴的几种类型的等变化和去等变化,并描述了它们的Drinfeld中心。特别地,我们计算了在小指数子因子分类中产生的融合类别的一些例子的Drinfeld中心的模数据:Asaeda-Haagerup子因子;$3^{\Z_4} $和$3^{\Z_2 \times \Z_2} $子因子;$2D2$子因子;还有$4442$子因子。结果提示了几个新的二次类无限族的可能性。在随附的论文\cite{GI19_2}中,描述和概括了与这些族相关的模数据对度量群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信