Measurement in the de Broglie-Bohm Interpretation: Double-Slit, Stern-Gerlach, and EPR-B

M. Gondran, A. Gondran
{"title":"Measurement in the de Broglie-Bohm Interpretation: Double-Slit, Stern-Gerlach, and EPR-B","authors":"M. Gondran, A. Gondran","doi":"10.1155/2014/605908","DOIUrl":null,"url":null,"abstract":"We propose a pedagogical presentation of measurement in the de Broglie-Bohm interpretation. In this heterodox interpretation, the position of a quantum particle exists and is piloted by the phase of the wave function. We show how this position explains determinism and realism in the three most important experiments of quantum measurement: double-slit, Stern-Gerlach and EPR-B. First, we present a numerical simulation of the double-slit experiment performed by Jnsson in 1961 with electrons. The method of Feynman path integrals allows to calculate the time dependent wave function. It shows that the interference phenomena appears only some centimeters after the slits. Moreover, the de Broglie-Bohm trajectories provide an explanation for the impact positions of the particles. Finally, we show how these trajectories converge to classical trajectories. Second, we present an analytic expression of the wave function in the Stern-Gerlach experiment. This explicit solution requires the calculation of a Pauli spinor with a spatial extension. This solution enables to demonstrate the decoherence of the wave function and the three postulates of quantum measurement: quantization, the Born interpretation and wave function reduction. The spinor spatial extension also enables the introduction of the de Broglie-Bohm trajectories, which gives a very simple explanation of the particles' impact and of the measurement process. Third, we study the EPR-B experiment, the Bohm version of the Einstein-Podolsky-Rosen experiment. Its theoretical resolution in space and time shows that a causal interpretation exists where each atom has a position and a spin. Finally, we suggest that a physical explanation of non-local influences is possible, compatible with Einstein's point of view on relativity.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"103 1","pages":"605908"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/605908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We propose a pedagogical presentation of measurement in the de Broglie-Bohm interpretation. In this heterodox interpretation, the position of a quantum particle exists and is piloted by the phase of the wave function. We show how this position explains determinism and realism in the three most important experiments of quantum measurement: double-slit, Stern-Gerlach and EPR-B. First, we present a numerical simulation of the double-slit experiment performed by Jnsson in 1961 with electrons. The method of Feynman path integrals allows to calculate the time dependent wave function. It shows that the interference phenomena appears only some centimeters after the slits. Moreover, the de Broglie-Bohm trajectories provide an explanation for the impact positions of the particles. Finally, we show how these trajectories converge to classical trajectories. Second, we present an analytic expression of the wave function in the Stern-Gerlach experiment. This explicit solution requires the calculation of a Pauli spinor with a spatial extension. This solution enables to demonstrate the decoherence of the wave function and the three postulates of quantum measurement: quantization, the Born interpretation and wave function reduction. The spinor spatial extension also enables the introduction of the de Broglie-Bohm trajectories, which gives a very simple explanation of the particles' impact and of the measurement process. Third, we study the EPR-B experiment, the Bohm version of the Einstein-Podolsky-Rosen experiment. Its theoretical resolution in space and time shows that a causal interpretation exists where each atom has a position and a spin. Finally, we suggest that a physical explanation of non-local influences is possible, compatible with Einstein's point of view on relativity.
德布罗意-玻姆解释中的测量:双缝、斯特恩-格拉赫和EPR-B
我们在德布罗意-玻姆解释中提出了测量的教学呈现。在这种非正统的解释中,量子粒子的位置是存在的,并且由波函数的相位来引导。我们展示了这种立场如何解释量子测量中三个最重要的实验:双缝实验、斯特恩-格拉赫实验和EPR-B实验中的决定论和实在论。首先,我们对1961年Jnsson用电子进行的双缝实验进行了数值模拟。费曼路径积分法允许计算随时间变化的波函数。结果表明,干涉现象仅在狭缝后几厘米处出现。此外,德布罗意-玻姆轨迹为粒子的撞击位置提供了解释。最后,我们展示了这些轨迹如何收敛于经典轨迹。其次,给出了Stern-Gerlach实验中波函数的解析表达式。这种显式解需要计算具有空间扩展的泡利旋量。这个解决方案能够证明波函数的退相干性和量子测量的三个假设:量子化、玻恩解释和波函数约化。旋量的空间扩展也使得引入德布罗意-玻姆轨迹成为可能,它对粒子的撞击和测量过程给出了一个非常简单的解释。第三,我们研究EPR-B实验,即爱因斯坦-波多尔斯基-罗森实验的玻姆版本。它在空间和时间上的理论分辨率表明,存在一种因果解释,其中每个原子都有一个位置和一个自旋。最后,我们认为非局部影响的物理解释是可能的,与爱因斯坦的相对论观点相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信