Weakly symmetric stress equilibration for hyperelastic material models

Q1 Mathematics
Fleurianne Bertrand, Marcel Moldenhauer, Gerhard Starke
{"title":"Weakly symmetric stress equilibration for hyperelastic material models","authors":"Fleurianne Bertrand,&nbsp;Marcel Moldenhauer,&nbsp;Gerhard Starke","doi":"10.1002/gamm.202000007","DOIUrl":null,"url":null,"abstract":"<p>A stress equilibration procedure for hyperelastic material models is proposed and analyzed in this paper. Based on the displacement-pressure approximation computed with a stable finite element pair, it constructs, in a vertex-patch-wise manner, an <i>H</i>(div)-conforming approximation to the first Piola-Kirchhoff stress. This is done in such a way that its associated Cauchy stress is weakly symmetric in the sense that its antisymmetric part is zero tested against continuous piecewise linear functions. Our main result is the identification of the subspace of test functions perpendicular to the range of the local equilibration system on each patch which turn out to be rigid body modes associated with the current configuration. Momentum balance properties are investigated analytically and numerically and the resulting stress reconstruction is shown to provide improved results for surface traction forces by computational experiments.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"43 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.202000007","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202000007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

A stress equilibration procedure for hyperelastic material models is proposed and analyzed in this paper. Based on the displacement-pressure approximation computed with a stable finite element pair, it constructs, in a vertex-patch-wise manner, an H(div)-conforming approximation to the first Piola-Kirchhoff stress. This is done in such a way that its associated Cauchy stress is weakly symmetric in the sense that its antisymmetric part is zero tested against continuous piecewise linear functions. Our main result is the identification of the subspace of test functions perpendicular to the range of the local equilibration system on each patch which turn out to be rigid body modes associated with the current configuration. Momentum balance properties are investigated analytically and numerically and the resulting stress reconstruction is shown to provide improved results for surface traction forces by computational experiments.

Abstract Image

超弹性材料模型的弱对称应力平衡
本文提出并分析了超弹性材料模型的应力平衡过程。以稳定有限元对计算的位移-压力近似为基础,以顶点补丁方式构造了第一Piola-Kirchhoff应力的H(div)符合近似。这是这样做的,它的相关柯西应力是弱对称的,从某种意义上说,它的反对称部分是零,对连续分段线性函数进行测试。我们的主要结果是确定了垂直于每个斑块上局部平衡系统范围的测试函数的子空间,这些子空间被证明是与当前构型相关的刚体模态。对动量平衡特性进行了分析和数值研究,并通过计算实验证明了所得到的应力重建对表面牵引力的计算结果有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信