Green's function for a two–dimensional exponentially graded elastic medium

Youn-Sha Chan, L. Gray, T. Kaplan, G. Paulino
{"title":"Green's function for a two–dimensional exponentially graded elastic medium","authors":"Youn-Sha Chan, L. Gray, T. Kaplan, G. Paulino","doi":"10.1098/rspa.2003.1220","DOIUrl":null,"url":null,"abstract":"The free–space Green function for a two–dimensional exponentially graded elastic medium is derived. The shear modulus Âμ is assumed to be an exponential function of the Cartesian coordinates (x,y), i.e. μ ≡ μ(x,y) = μ0e2(β1x+β2y), where μ0, β1, and β2 are material constants, and the Poisson ratio is assumed constant. The Green function is shown to consist of a singular part, involving modified Bessel functions, and a non–singular term. The non–singular component is expressed in terms of one–dimensional Fourier–type integrals that can be computed by the fast Fourier transform.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2003.1220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

The free–space Green function for a two–dimensional exponentially graded elastic medium is derived. The shear modulus Âμ is assumed to be an exponential function of the Cartesian coordinates (x,y), i.e. μ ≡ μ(x,y) = μ0e2(β1x+β2y), where μ0, β1, and β2 are material constants, and the Poisson ratio is assumed constant. The Green function is shown to consist of a singular part, involving modified Bessel functions, and a non–singular term. The non–singular component is expressed in terms of one–dimensional Fourier–type integrals that can be computed by the fast Fourier transform.
二维指数梯度弹性介质的格林函数
导出了二维指数梯度弹性介质的自由空间格林函数。假设剪切模量Âμ是笛卡尔坐标(x,y)的指数函数,即μ≡μ(x,y) = μ0e2(β1x+β2y),其中μ0、β1和β2为材料常数,泊松比为常数。格林函数由奇异部分(包含修正贝塞尔函数)和非奇异项组成。非奇异分量用一维傅里叶型积分表示,这种积分可以通过快速傅里叶变换计算得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信