Evaluation of convection-permitting extreme precipitation simulations for the south of France

Linh N. Luu, R. Vautard, P. Yiou, J. Soubeyroux
{"title":"Evaluation of convection-permitting extreme precipitation\nsimulations for the south of France","authors":"Linh N. Luu, R. Vautard, P. Yiou, J. Soubeyroux","doi":"10.5194/esd-2020-77","DOIUrl":null,"url":null,"abstract":"Abstract. In the autumn, the French Mediterranean area is frequently exposed to heavy precipitation events whose daily accumulation can exceed 300 mm. One of the key processes contributing to these precipitation amounts is the deep convection, which can be resolved explicitly by state-or-the-art convection-permitting model to reproduce heavy rainfall events that are comparable to observations. However, this approach has never been used in climate simulation for the Mediterranean coastal region. In this research, we investigate the added values of using three ensembles of climate simulations at convection-permitting resolution (approx. 3 km) in replicating extreme precipitation events in both daily and shorter time scale over the South of France. These three convection-permitting simulations are performed with the Weather Research and Forecasting Model (WRF). They are forced by three EURO-CORDEX simulations, which are also downscaled with WRF at the resolution of 0.11° (approx. 12 km). We found that a convection-permitting approach provides a more realistic representation of extreme daily and 3-hourly rainfall simulations in comparison with EURO-CORDEX simulations. Their similarity with observations allows a use for climate change studies and its impacts.\n","PeriodicalId":11466,"journal":{"name":"Earth System Dynamics Discussions","volume":"34 1","pages":"1-24"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Dynamics Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-2020-77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract. In the autumn, the French Mediterranean area is frequently exposed to heavy precipitation events whose daily accumulation can exceed 300 mm. One of the key processes contributing to these precipitation amounts is the deep convection, which can be resolved explicitly by state-or-the-art convection-permitting model to reproduce heavy rainfall events that are comparable to observations. However, this approach has never been used in climate simulation for the Mediterranean coastal region. In this research, we investigate the added values of using three ensembles of climate simulations at convection-permitting resolution (approx. 3 km) in replicating extreme precipitation events in both daily and shorter time scale over the South of France. These three convection-permitting simulations are performed with the Weather Research and Forecasting Model (WRF). They are forced by three EURO-CORDEX simulations, which are also downscaled with WRF at the resolution of 0.11° (approx. 12 km). We found that a convection-permitting approach provides a more realistic representation of extreme daily and 3-hourly rainfall simulations in comparison with EURO-CORDEX simulations. Their similarity with observations allows a use for climate change studies and its impacts.
法国南部允许对流的极端降水模拟的评估
摘要在秋季,法国地中海地区经常遭遇强降水事件,日累积量可超过300毫米。造成这些降水量的关键过程之一是深对流,这可以通过最先进的对流允许模式来明确解决,以重现与观测相媲美的强降雨事件。然而,这种方法从未被用于地中海沿岸地区的气候模拟。在这项研究中,我们研究了在允许对流的分辨率下使用三个气候模拟集合的附加价值。3公里)在法国南部复制极端降水事件在每日和更短的时间尺度。这三个允许对流的模拟是用天气研究和预报模式(WRF)进行的。它们是由三个EURO-CORDEX模拟所强迫的,这些模拟也被WRF缩小到0.11°(约0.11°)的分辨率。12公里)。我们发现,与EURO-CORDEX模拟相比,允许对流的方法提供了更真实的极端日和3小时降雨模拟。它们与观测的相似性使其能够用于气候变化研究及其影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信