{"title":"Plant-based Isoquinoline Alkaloids: A Chemical and Pharmacological Profile of Some Important Leads","authors":"Arjun Singh","doi":"10.52711/0974-4150.2023.00008","DOIUrl":null,"url":null,"abstract":"Plant-based products are a one-of-a-kind source of favoured molecules with a wide scaffold variety and broad multi-target potential for the treatment of complicated disorders. Among multi-target NPs, alkaloids have showed anti-inflammatory, anticancer, cardioprotective, and neuroprotective effects, supporting their promise in the treatment of chronic multifactorial disorders. Several recent investigations have revealed that isoquinoline alkaloids (IAs) have multimodal potential, sparking growing interest in the polypharmacological research of these small molecules, particularly in the field of neurological illnesses and cancer. IAs are a broad and diversified category of nitrogenous compounds that are extensively dispersed in living organisms, mostly in plants family. Isoquinolines are known as highly conserved metabolites in early vascular plants at the chemotaxonomic level; moreover, biochemical and molecular phylogenetic investigations have revealed that these alkaloids play an evolutionarily monophyletic role in basal angiosperms.As a result, medicinal chemistry has been experimenting with various ways in order to overcome the constraints of existing paradigms and increase the effectiveness of novel therapeutic molecules. In this context, the search or design of multi-target medications has shown an accelerated breakthrough; in fact, this strategy has sparked the interest of both the scientific community and the pharmaceutical business, allowing several multimodal agents already on the market to be positioned.","PeriodicalId":8550,"journal":{"name":"Asian Journal of Research in Chemistry","volume":"142 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Research in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52711/0974-4150.2023.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-based products are a one-of-a-kind source of favoured molecules with a wide scaffold variety and broad multi-target potential for the treatment of complicated disorders. Among multi-target NPs, alkaloids have showed anti-inflammatory, anticancer, cardioprotective, and neuroprotective effects, supporting their promise in the treatment of chronic multifactorial disorders. Several recent investigations have revealed that isoquinoline alkaloids (IAs) have multimodal potential, sparking growing interest in the polypharmacological research of these small molecules, particularly in the field of neurological illnesses and cancer. IAs are a broad and diversified category of nitrogenous compounds that are extensively dispersed in living organisms, mostly in plants family. Isoquinolines are known as highly conserved metabolites in early vascular plants at the chemotaxonomic level; moreover, biochemical and molecular phylogenetic investigations have revealed that these alkaloids play an evolutionarily monophyletic role in basal angiosperms.As a result, medicinal chemistry has been experimenting with various ways in order to overcome the constraints of existing paradigms and increase the effectiveness of novel therapeutic molecules. In this context, the search or design of multi-target medications has shown an accelerated breakthrough; in fact, this strategy has sparked the interest of both the scientific community and the pharmaceutical business, allowing several multimodal agents already on the market to be positioned.