Combining MALDI-TOF and molecular imaging with principal component analysis for biomarker discovery and clinical diagnosis of cancer

Yi-Tzu Cho , Yi-Yan Chiang , Jentaie Shiea , Ming-Feng Hou
{"title":"Combining MALDI-TOF and molecular imaging with principal component analysis for biomarker discovery and clinical diagnosis of cancer","authors":"Yi-Tzu Cho ,&nbsp;Yi-Yan Chiang ,&nbsp;Jentaie Shiea ,&nbsp;Ming-Feng Hou","doi":"10.1016/j.gmbhs.2012.04.022","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular imaging using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS) is effective for determining the distribution of molecules of interest in specific tissues. It can determine the direct correlation between metabolite, lipid, and protein expression and histology. Principle component analysis (PCA) can reduce the dimensions of a data set while still retaining the information present in the original data set. Using PCA to process MALDI data, samples with different statuses and ion patterns on their MALDI mass spectra can be classified, grouped, and evaluated on the same score plot. The use of MALDI-TOF in combination with PCA to compare the lipid, peptide, and protein profiles of different biological specimens can then be used to diagnose disease. Because ions with significant differences between sampling regions in a tissue can be indicated using PCA, the imaging of these “interesting peaks” can be visualized by plotting the ion intensity across the tissue section.</p></div>","PeriodicalId":100577,"journal":{"name":"Genomic Medicine, Biomarkers, and Health Sciences","volume":"4 1","pages":"Pages 3-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gmbhs.2012.04.022","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomic Medicine, Biomarkers, and Health Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211425412000477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Molecular imaging using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS) is effective for determining the distribution of molecules of interest in specific tissues. It can determine the direct correlation between metabolite, lipid, and protein expression and histology. Principle component analysis (PCA) can reduce the dimensions of a data set while still retaining the information present in the original data set. Using PCA to process MALDI data, samples with different statuses and ion patterns on their MALDI mass spectra can be classified, grouped, and evaluated on the same score plot. The use of MALDI-TOF in combination with PCA to compare the lipid, peptide, and protein profiles of different biological specimens can then be used to diagnose disease. Because ions with significant differences between sampling regions in a tissue can be indicated using PCA, the imaging of these “interesting peaks” can be visualized by plotting the ion intensity across the tissue section.

将MALDI-TOF与分子成像结合主成分分析用于肿瘤生物标志物的发现和临床诊断
使用基质辅助激光解吸电离/飞行时间质谱法(MALDI-TOF MS)的分子成像对于确定特定组织中感兴趣的分子分布是有效的。它可以确定代谢物、脂质和蛋白质表达与组织学之间的直接关系。主成分分析(PCA)可以减少数据集的维数,同时仍然保留原始数据集中存在的信息。利用PCA对MALDI数据进行处理,可以对MALDI质谱中不同状态和离子模式的样品进行分类、分组,并在同一计分图上进行评价。将MALDI-TOF与PCA结合使用,比较不同生物标本的脂质、肽和蛋白质谱,然后可用于疾病诊断。由于可以使用PCA来指示组织中采样区域之间具有显著差异的离子,因此可以通过绘制组织切片上的离子强度来可视化这些“有趣峰”的成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信