An effective, novel, and cheap carbon paste electrode for naproxen estimation

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL
M. Abd-Elsabour, M. Abou-Krisha, A. G. Alhamzani, T. Yousef
{"title":"An effective, novel, and cheap carbon paste electrode for naproxen estimation","authors":"M. Abd-Elsabour, M. Abou-Krisha, A. G. Alhamzani, T. Yousef","doi":"10.1515/revac-2022-0041","DOIUrl":null,"url":null,"abstract":"Abstract Herein, a carbon paste electrode (CPE) modified with poly(reduced-o-nitrobenzoic acid [r-o-NBA]) supported in graphene quantum dots (GQDs) was fabricated for the first time. The fabricated electrode’s surface morphology and composition were characterised by scanning electron microscope and transmission electron microscope. The poly(r-o-NBA)/GQDs/CPE showed high electrocatalytic activity towards the oxidation of naproxen (NPX) using cyclic and differential pulse voltammetric methods. The effect of scan rate on the oxidation peak of NPX suggests that the electrode process was typically diffusion-controlled. In addition, the effect of pH reflects the participation of protons in the oxidation process of NPX. The peak current is linearly proportional to the concentration of NPX ranging from 1.0 to 100.0 µM, with the correlation coefficient (R 2), sensitivity, limit of detection (3σ), and limit of quantification (10σ) being 0.9995, 0.419 µA·µM−1·cm−2, 0.672, and 2.241 µM, respectively. Using chronoamperometry, the diffusion coefficient of NPX at the poly(r-o-NBA)/GQDs/CPE was estimated to be 5.36 × 10−6 cm2·s−1. The proposed electrode has good reproducibility, stability, and high selectivity for NPX oxidation. The obtained recovery range (96.7–102.0%) means that the proposed sensor performed satisfactorily when applied for the detection of NPX in its pharmaceutical formulations.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"1 1","pages":"168 - 179"},"PeriodicalIF":3.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2022-0041","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Herein, a carbon paste electrode (CPE) modified with poly(reduced-o-nitrobenzoic acid [r-o-NBA]) supported in graphene quantum dots (GQDs) was fabricated for the first time. The fabricated electrode’s surface morphology and composition were characterised by scanning electron microscope and transmission electron microscope. The poly(r-o-NBA)/GQDs/CPE showed high electrocatalytic activity towards the oxidation of naproxen (NPX) using cyclic and differential pulse voltammetric methods. The effect of scan rate on the oxidation peak of NPX suggests that the electrode process was typically diffusion-controlled. In addition, the effect of pH reflects the participation of protons in the oxidation process of NPX. The peak current is linearly proportional to the concentration of NPX ranging from 1.0 to 100.0 µM, with the correlation coefficient (R 2), sensitivity, limit of detection (3σ), and limit of quantification (10σ) being 0.9995, 0.419 µA·µM−1·cm−2, 0.672, and 2.241 µM, respectively. Using chronoamperometry, the diffusion coefficient of NPX at the poly(r-o-NBA)/GQDs/CPE was estimated to be 5.36 × 10−6 cm2·s−1. The proposed electrode has good reproducibility, stability, and high selectivity for NPX oxidation. The obtained recovery range (96.7–102.0%) means that the proposed sensor performed satisfactorily when applied for the detection of NPX in its pharmaceutical formulations.
一种有效、新颖、廉价的萘普生估算碳糊电极
本文首次制备了一种负载在石墨烯量子点(GQDs)上的碳糊电极(CPE),该电极由聚(还原-o-硝基苯甲酸[r-o-NBA])修饰。利用扫描电镜和透射电镜对制备电极的表面形貌和成分进行了表征。采用循环和差分脉冲伏安法测定聚(r-o-NBA)/GQDs/CPE对萘普生(NPX)的氧化表现出较高的电催化活性。扫描速率对NPX氧化峰的影响表明电极过程是典型的扩散控制过程。另外,pH值的影响反映了质子参与NPX氧化过程的情况。峰值电流与NPX浓度在1.0 ~ 100.0µM范围内呈线性关系,相关系数r2为0.9995,灵敏度为0.419µA·µM−1·cm−2,检测限为0.672,定量限为2.241µM。通过计时电流法,估计NPX在poly(r-o-NBA)/GQDs/CPE上的扩散系数为5.36 × 10−6 cm2·s−1。该电极对NPX氧化具有良好的重现性、稳定性和选择性。所获得的回收率范围(96.7-102.0%)表明所提出的传感器在用于其制剂中NPX的检测时表现满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Analytical Chemistry
Reviews in Analytical Chemistry 化学-分析化学
CiteScore
7.50
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Reviews in Analytical Chemistry publishes authoritative reviews by leading experts in the dynamic field of chemical analysis. The subjects can encompass all branches of modern analytical chemistry such as spectroscopy, chromatography, mass spectrometry, electrochemistry and trace analysis and their applications to areas such as environmental control, pharmaceutical industry, automation and other relevant areas. Review articles bring the expert up to date in a concise manner and provide researchers an overview of new techniques and methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信