{"title":"Comparative analysis of protein-protein interaction networks in neural differentiation mechanisms","authors":"Marzieh Moazeny , Ali Salari , Zohreh Hojati , Fariba Esmaeili","doi":"10.1016/j.diff.2022.05.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Neural differentiation as a major process during neural cell therapy is one of the main issues that is not fully characterized. This study focuses on the major deconstruction of the transcriptional networks that regulate cell fate determination<span> during neural differentiation under the influence of RA signalling. In our studies, we used four different microarray datasets containing a total of 15,660 genes to determine which genes were differentially expressed during neural differentiation from pluripotent stem cells (P19), among the 17 samples from four different datasets that were integrated via meta-analysis approaches. Of the 15,660 gene expression in our data integration, 443 </span></span>DEGs are induced during neural differentiation. Upstream dissection of these 443 DEGs revealed a network of protein-protein interactions (PPIs) from TFs and kinases, as well as intermediate proteins between them, which are indicated by three (POU51, NANOG, and FOXO1) down-expression genes and one </span>PAX6<span><span><span> up-expression gene playing roles in up-stream of these 443 induced DEGs during neural differentiation. The constructed network from the PPIs database revealed that four novel sub-networks play major roles in neuron differentiation in cluster 3, retinol metabolism in cluster 4, </span>Rap1 </span>signalling pathways<span> in cluster 2, and axonogenesis in cluster 6. These four clusters have revealed very useful information about how neural characterization will be created from pluripotent stem cells.</span></span></p><p>This research reveals a plethora of information on the neural differentiation process, including cell commitment and neural differentiation, and lays the groundwork for future research into particular pathways involving protein-protein interactions in neurogenesis.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"126 ","pages":"Pages 1-9"},"PeriodicalIF":2.2000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468122000445","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Neural differentiation as a major process during neural cell therapy is one of the main issues that is not fully characterized. This study focuses on the major deconstruction of the transcriptional networks that regulate cell fate determination during neural differentiation under the influence of RA signalling. In our studies, we used four different microarray datasets containing a total of 15,660 genes to determine which genes were differentially expressed during neural differentiation from pluripotent stem cells (P19), among the 17 samples from four different datasets that were integrated via meta-analysis approaches. Of the 15,660 gene expression in our data integration, 443 DEGs are induced during neural differentiation. Upstream dissection of these 443 DEGs revealed a network of protein-protein interactions (PPIs) from TFs and kinases, as well as intermediate proteins between them, which are indicated by three (POU51, NANOG, and FOXO1) down-expression genes and one PAX6 up-expression gene playing roles in up-stream of these 443 induced DEGs during neural differentiation. The constructed network from the PPIs database revealed that four novel sub-networks play major roles in neuron differentiation in cluster 3, retinol metabolism in cluster 4, Rap1 signalling pathways in cluster 2, and axonogenesis in cluster 6. These four clusters have revealed very useful information about how neural characterization will be created from pluripotent stem cells.
This research reveals a plethora of information on the neural differentiation process, including cell commitment and neural differentiation, and lays the groundwork for future research into particular pathways involving protein-protein interactions in neurogenesis.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.