Jeffrey Len Yung Kwuan, L. Rao, Evan Yip, Wisdom Qu, J. Sjoberg
{"title":"Impact Of Stencil Quality & Technolgy On Solder Paste Printing Performance","authors":"Jeffrey Len Yung Kwuan, L. Rao, Evan Yip, Wisdom Qu, J. Sjoberg","doi":"10.23919/PANPACIFIC.2019.8696551","DOIUrl":null,"url":null,"abstract":"The growth of the Internet of Things (IoT) has greatly increased miniaturization development in packaging and board level assembly. As the industry is moving to smaller and finer pitches such as 008004, 0.3mm CSP, and BGA, screen printing becomes one of the critical processes to produce a good quality surface mount assembly. It has been widely accepted that 50–70% of SMT defects come from printing applications. There are many variables that will affect the quality of printing such as machine set up, solder paste handling and storage, stencil quality, stencil aperture design, printing parameters, and others. In this paper, we will evaluate the impact of stencil quality statistically through MiniTab software by comparing the printing performance of 0.35mm pitch and 01005 pads from different stencil suppliers.","PeriodicalId":6747,"journal":{"name":"2019 Pan Pacific Microelectronics Symposium (Pan Pacific)","volume":"41 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Pan Pacific Microelectronics Symposium (Pan Pacific)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PANPACIFIC.2019.8696551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The growth of the Internet of Things (IoT) has greatly increased miniaturization development in packaging and board level assembly. As the industry is moving to smaller and finer pitches such as 008004, 0.3mm CSP, and BGA, screen printing becomes one of the critical processes to produce a good quality surface mount assembly. It has been widely accepted that 50–70% of SMT defects come from printing applications. There are many variables that will affect the quality of printing such as machine set up, solder paste handling and storage, stencil quality, stencil aperture design, printing parameters, and others. In this paper, we will evaluate the impact of stencil quality statistically through MiniTab software by comparing the printing performance of 0.35mm pitch and 01005 pads from different stencil suppliers.