{"title":"Optimizing the energy storage performance of NaNbO3 ceramics by rare-earth-based composite perovskite Sm(Mg0.5Zr0.5)O3 modification","authors":"Mingzhao Xu, Dafu Zeng, Xiang Wang, Peng Nong, Yue Pan, Qinpeng Dong, Jiaming Wang, Huanfu Zhou, Xiuli Chen","doi":"10.20517/microstructures.2023.19","DOIUrl":null,"url":null,"abstract":"Researchers often improve the energy storage performance of NaNbO3 ceramics through doping with Bi-based composites. Recent studies have shown that rare-earth elements, such as La and Sm, can suppress remanent polarization. In this study, a (1-x )NaNbO3-x Sm(Mg0.5Zr0.5)O3 ceramic system was designed. Doping with Sm(Mg0.5Zr0.5)O3 (SMZ) increases the resistance, activation energy, and bandgap of NaNbO3 ceramics, improves the breakdown field strength, and optimizes the energy storage efficiency of NaNbO3 ceramics. In this study, 0.92NaNbO3-0.08 SMZ achieved an energy storage density of 4.3/cm3 and an energy storage efficiency of 85.6% at 560 kV/cm. When x = 0.15, the sample exhibited an ultrahigh breakdown field strength and energy storage efficiency (720 kV/cm and 91%, respectively). In addition, the 0.08 SMZ sample had an ultrafast release rate of t 0.9 (57 ns), high current density (777.1 A/cm2), and high power density (69.93 MW/cm3). It has practical application prospects in high-performance energy storage capacitors.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"208 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2023.19","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers often improve the energy storage performance of NaNbO3 ceramics through doping with Bi-based composites. Recent studies have shown that rare-earth elements, such as La and Sm, can suppress remanent polarization. In this study, a (1-x )NaNbO3-x Sm(Mg0.5Zr0.5)O3 ceramic system was designed. Doping with Sm(Mg0.5Zr0.5)O3 (SMZ) increases the resistance, activation energy, and bandgap of NaNbO3 ceramics, improves the breakdown field strength, and optimizes the energy storage efficiency of NaNbO3 ceramics. In this study, 0.92NaNbO3-0.08 SMZ achieved an energy storage density of 4.3/cm3 and an energy storage efficiency of 85.6% at 560 kV/cm. When x = 0.15, the sample exhibited an ultrahigh breakdown field strength and energy storage efficiency (720 kV/cm and 91%, respectively). In addition, the 0.08 SMZ sample had an ultrafast release rate of t 0.9 (57 ns), high current density (777.1 A/cm2), and high power density (69.93 MW/cm3). It has practical application prospects in high-performance energy storage capacitors.
期刊介绍:
Superlattices and Microstructures has continued as Micro and Nanostructures. Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover:
• Novel micro and nanostructures
• Nanomaterials (nanowires, nanodots, 2D materials ) and devices
• Synthetic heterostructures
• Plasmonics
• Micro and nano-defects in materials (semiconductor, metal and insulators)
• Surfaces and interfaces of thin films
In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board.
Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4