Machine Vision Tracking and Automation of a Microrobot (sAFAM)

IF 1 Q4 ENGINEERING, MANUFACTURING
Colin Warn, A. Sherehiy, Moath H. A. Alqatamin, Brooke Ritz, Ruoshi Zhang, S. Chowdhury, Danming Wei, D. Popa
{"title":"Machine Vision Tracking and Automation of a Microrobot (sAFAM)","authors":"Colin Warn, A. Sherehiy, Moath H. A. Alqatamin, Brooke Ritz, Ruoshi Zhang, S. Chowdhury, Danming Wei, D. Popa","doi":"10.1115/msec2022-85424","DOIUrl":null,"url":null,"abstract":"\n In this paper, we propose a method for tracking a microrobot’s three-dimensional position using microscope machine vision. The microrobot, theSolid Articulated Four Axis Microrobot (sAFAM), is being developed to enable the assembly and manipulation of micro and nanoscale objects. In the future, arrays of sAFAMS working together can be integrated into a wafer-scale nanofactory, Prior to use, microrobots in this microfactory need calibration, which can be achieved using the proposed measurement technique. Our approach enables faster and more accurate mapping of microrobot translations and rotations, and orders of magnitude larger datasets can be created by automation. Cameras feeds on a custom microscopy system is fed into a data processing pipeline that enables tracking of the microrobot in real-time. This particular machine vision method was implemented with a help of OpenCV and Python and can be used to track the movement of other micrometer-sized features. Additionally, a script was created to enable automated repeatability tests for each of the six trajectories traversable by the robot. A more precise microrobot workable area was also determined thanks to the significantly larger datasets enabled by the combined automation and machine vision approaches.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a method for tracking a microrobot’s three-dimensional position using microscope machine vision. The microrobot, theSolid Articulated Four Axis Microrobot (sAFAM), is being developed to enable the assembly and manipulation of micro and nanoscale objects. In the future, arrays of sAFAMS working together can be integrated into a wafer-scale nanofactory, Prior to use, microrobots in this microfactory need calibration, which can be achieved using the proposed measurement technique. Our approach enables faster and more accurate mapping of microrobot translations and rotations, and orders of magnitude larger datasets can be created by automation. Cameras feeds on a custom microscopy system is fed into a data processing pipeline that enables tracking of the microrobot in real-time. This particular machine vision method was implemented with a help of OpenCV and Python and can be used to track the movement of other micrometer-sized features. Additionally, a script was created to enable automated repeatability tests for each of the six trajectories traversable by the robot. A more precise microrobot workable area was also determined thanks to the significantly larger datasets enabled by the combined automation and machine vision approaches.
微型机器人(sAFAM)的机器视觉跟踪与自动化
本文提出了一种利用显微镜机器视觉跟踪微型机器人三维位置的方法。这种微型机器人被称为固体铰接四轴微型机器人(sAFAM),正在开发中,以实现微型和纳米级物体的组装和操作。在未来,协同工作的sAFAMS阵列可以集成到晶圆级纳米工厂中。在使用之前,该微工厂中的微型机器人需要校准,这可以使用所提出的测量技术来实现。我们的方法可以更快,更准确地映射微型机器人的平移和旋转,并且可以通过自动化创建数量级更大的数据集。在定制的显微镜系统上输入的摄像头被送入数据处理管道,从而能够实时跟踪微型机器人。这种特殊的机器视觉方法是在OpenCV和Python的帮助下实现的,可用于跟踪其他微米尺寸特征的运动。此外,还创建了一个脚本,以便对机器人可穿越的六条轨迹中的每一条进行自动化的可重复性测试。由于自动化和机器视觉相结合的方法提供了更大的数据集,因此还确定了更精确的微型机器人工作区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Micro and Nano-Manufacturing
Journal of Micro and Nano-Manufacturing ENGINEERING, MANUFACTURING-
CiteScore
2.70
自引率
0.00%
发文量
12
期刊介绍: The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信