Routing on the Shortest Pairs of Disjoint Paths

P. Babarczi, G. Rétvári, L. Rónyai, János Tapolcai
{"title":"Routing on the Shortest Pairs of Disjoint Paths","authors":"P. Babarczi, G. Rétvári, L. Rónyai, János Tapolcai","doi":"10.23919/ifipnetworking55013.2022.9829760","DOIUrl":null,"url":null,"abstract":"Recent trends point towards communication networks will be multi-path in nature to increase failure resilience, support load-balancing and provide alternate paths for congestion avoidance. We argue that the transition from single-path to multi-path routing should be as seamless as possible in order to lower the deployability barrier for network operators. Therefore, in this paper we are focusing on the problem of routing along the shortest pairs of disjoint paths between each source-destination pair over the currently deployed link-state routing architecture. We show that the union of disjoint path-pairs towards a given destination has a special structure, and we propose an efficient tag encoding scheme which requires only one extra forwarding table entry per router per destination. Our numerical evaluations demonstrate that in real-world topologies usually only 4 bit tags are sufficient in the packet headers to route on the disjoint path-pairs. Finally, we show that our tags automatically encode additional paths beyond the shortest pair of disjoint paths, including the shortest paths themselves, which enables incremental deployment of the proposed method.","PeriodicalId":31737,"journal":{"name":"Edutech","volume":"52 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Edutech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ifipnetworking55013.2022.9829760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent trends point towards communication networks will be multi-path in nature to increase failure resilience, support load-balancing and provide alternate paths for congestion avoidance. We argue that the transition from single-path to multi-path routing should be as seamless as possible in order to lower the deployability barrier for network operators. Therefore, in this paper we are focusing on the problem of routing along the shortest pairs of disjoint paths between each source-destination pair over the currently deployed link-state routing architecture. We show that the union of disjoint path-pairs towards a given destination has a special structure, and we propose an efficient tag encoding scheme which requires only one extra forwarding table entry per router per destination. Our numerical evaluations demonstrate that in real-world topologies usually only 4 bit tags are sufficient in the packet headers to route on the disjoint path-pairs. Finally, we show that our tags automatically encode additional paths beyond the shortest pair of disjoint paths, including the shortest paths themselves, which enables incremental deployment of the proposed method.
不相交路径最短对上的路由
最近的趋势表明,通信网络本质上将是多路径的,以增加故障恢复能力,支持负载平衡,并为避免拥塞提供备用路径。我们认为,从单路径路由到多路径路由的过渡应该尽可能无缝,以降低网络运营商的可部署性障碍。因此,在本文中,我们关注的是在当前部署的链路状态路由体系结构上沿着每个源-目的对之间不相交路径的最短对进行路由的问题。我们证明了通往给定目的地的不连接路径对的并集具有特殊的结构,并提出了一种高效的标签编码方案,该方案每台路由器每台目的地只需要一个额外的转发表条目。我们的数值评估表明,在现实世界的拓扑结构中,通常只有4位标签在包头中足以在不相交的路径对上路由。最后,我们展示了我们的标签自动编码除了最短的不相交路径对之外的其他路径,包括最短路径本身,这使得所提出的方法能够增量部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信