Qingyu Wang, D. Tang, G. Canton, Zheyang Wu, T. Hatsukami, K. Billiar, C. Yuan
{"title":"Using 3D Thin-Layer Model with in Vivo Patient-Specific Vessel Material Properties to Assesse Carotid Atherosclerotic Plaque Vulnerability","authors":"Qingyu Wang, D. Tang, G. Canton, Zheyang Wu, T. Hatsukami, K. Billiar, C. Yuan","doi":"10.32604/MCB.2019.05748","DOIUrl":null,"url":null,"abstract":"Image-based computational models have been introduced to calculate plaque stress/strain conditions and investigate their association with plaque progression and rupture [Tang, Yang, Zheng, et al. (2004)]. However, the accuracy of the computational results is heavily dependent on the data and assumptions used by those models. Patient-specific vessel material properties are in general lacking in image-based computational models, limiting the accuracy of their stress/strain calculations. \nA noninvasive approach of combining in vivo 3D multi-contrast and Cine magnetic resonance imaging (MRI) and computational modeling was used to quantify patient-specific carotid plaque material properties for potential plaque model improvements [Wang, Canton, Guo, et al. (2017)]. The stress-based plaque vulnerability index (SPVI) was proposed to combine mechanical analysis, plaque morphology and composition for more complete carotid plaque vulnerability assessment.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":"242 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/MCB.2019.05748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
Image-based computational models have been introduced to calculate plaque stress/strain conditions and investigate their association with plaque progression and rupture [Tang, Yang, Zheng, et al. (2004)]. However, the accuracy of the computational results is heavily dependent on the data and assumptions used by those models. Patient-specific vessel material properties are in general lacking in image-based computational models, limiting the accuracy of their stress/strain calculations.
A noninvasive approach of combining in vivo 3D multi-contrast and Cine magnetic resonance imaging (MRI) and computational modeling was used to quantify patient-specific carotid plaque material properties for potential plaque model improvements [Wang, Canton, Guo, et al. (2017)]. The stress-based plaque vulnerability index (SPVI) was proposed to combine mechanical analysis, plaque morphology and composition for more complete carotid plaque vulnerability assessment.
期刊介绍:
The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.