Afsoon Saedi, Ali Mashinchian Moradi, S. Kimiagar, H. Ahmad panahi
{"title":"Photosensitization of fucoxanthin-graphene complexes: A computational approach","authors":"Afsoon Saedi, Ali Mashinchian Moradi, S. Kimiagar, H. Ahmad panahi","doi":"10.3233/mgc-210188","DOIUrl":null,"url":null,"abstract":"Photosensitization of fucoxanthin-graphene (FX-GR) complexes were investigated in this work for detecting their roles of irradiating energy absorptions. To this aim, density functional theory (DFT computational approach as employed to obtain the optimized structures and their corresponding molecular orbital features. Both of original linear models of FX and its broken models, LFX and RFX, were investigated for attaching to a brigading GR molecular model. In this regard, the models were optimized to obtain the minimized energy configurations, in which for double-attachment of FG to the GR coroner atoms, Cis and Trans configurations were obtained for the FX-GR complex models. Based on the obtained achievements of molecular orbitals photosensitization features, the models were varied by the absorbed wavelengths making them suitable for various applications. In this regard, both of shorter and longer irradiated wavelengths were applicable for the purpose.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-210188","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Photosensitization of fucoxanthin-graphene (FX-GR) complexes were investigated in this work for detecting their roles of irradiating energy absorptions. To this aim, density functional theory (DFT computational approach as employed to obtain the optimized structures and their corresponding molecular orbital features. Both of original linear models of FX and its broken models, LFX and RFX, were investigated for attaching to a brigading GR molecular model. In this regard, the models were optimized to obtain the minimized energy configurations, in which for double-attachment of FG to the GR coroner atoms, Cis and Trans configurations were obtained for the FX-GR complex models. Based on the obtained achievements of molecular orbitals photosensitization features, the models were varied by the absorbed wavelengths making them suitable for various applications. In this regard, both of shorter and longer irradiated wavelengths were applicable for the purpose.
期刊介绍:
Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.