{"title":"Parallel Alternating Direction Primal-Dual (PADPD) Algorithm for Multi-Block Centralized Optimization","authors":"Seyyed Shaho Alaviani, Atul G. Kelkar","doi":"10.1115/1.4056853","DOIUrl":null,"url":null,"abstract":"\n In this paper, a centralized two-block separable convex optimization with equality constraint and its extension to multi-block optimization are considered. The first fully parallel primal-dual discrete-time algorithm called Parallel Alternating Direction Primal-Dual (PADPD) is proposed. In the algorithm, the primal variables are updated in an alternating fashion like Alternating Direction Method of Multipliers (ADMM). The algorithm can handle non-smoothness of objective functions with strong convergence. Unlike existing discrete-time algorithms such as Method of Multipliers (MM), ADMM, Parallel ADMM, Bi-Alternating Direction Method of Multipliers (BiADMM), and Primal-Dual Fixed Point (PDFP) algorithms, all primal and dual variables in the proposed algorithm are updated independently. Therefore, the time complexity of the algorithm can be significantly reduced. It is shown that the rate of convergence of the algorithm for Quadratic or Linear cost functions is exponential or linear under suitable assumptions. The algorithm can be directly extended to any finite multi-block optimization without further assumptions while preserving its convergence. PADPD algorithm not only can compute more iterations (since it is fully parallel) for the same time-step but also can have faster convergence rate than that of ADMM. Finally, two numerical examples are provided in order to show the advantageous of PADPD algorithm.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"16 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056853","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a centralized two-block separable convex optimization with equality constraint and its extension to multi-block optimization are considered. The first fully parallel primal-dual discrete-time algorithm called Parallel Alternating Direction Primal-Dual (PADPD) is proposed. In the algorithm, the primal variables are updated in an alternating fashion like Alternating Direction Method of Multipliers (ADMM). The algorithm can handle non-smoothness of objective functions with strong convergence. Unlike existing discrete-time algorithms such as Method of Multipliers (MM), ADMM, Parallel ADMM, Bi-Alternating Direction Method of Multipliers (BiADMM), and Primal-Dual Fixed Point (PDFP) algorithms, all primal and dual variables in the proposed algorithm are updated independently. Therefore, the time complexity of the algorithm can be significantly reduced. It is shown that the rate of convergence of the algorithm for Quadratic or Linear cost functions is exponential or linear under suitable assumptions. The algorithm can be directly extended to any finite multi-block optimization without further assumptions while preserving its convergence. PADPD algorithm not only can compute more iterations (since it is fully parallel) for the same time-step but also can have faster convergence rate than that of ADMM. Finally, two numerical examples are provided in order to show the advantageous of PADPD algorithm.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping