{"title":"Improved oscillation estimates and the Hitchin–Thorpe inequality on compact Ricci solitons","authors":"H. Tadano","doi":"10.1063/5.0152174","DOIUrl":null,"url":null,"abstract":"Stimulated by improved oscillation estimates of the potential function and the scalar curvature on compact gradient Ricci solitons introduced in a recent study by Cheng, Ribeiro, and Zhou [Proc. Am. Math. Soc. Ser. B 10, 33–45 (2023)], we give several new sufficient conditions for compact four-dimensional normalized shrinking Ricci solitons to satisfy the Hitchin–Thorpe inequality. Our new conditions refine the validity of the Hitchin–Thorpe inequality obtained by Tadano [J. Math. Phys. 58, 023503 (2017)], Tadano [J. Math. Phys. 59, 043507 (2018)], and Tadano [Differ. Geom. Appl. 66, 231–241 (2019)].","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"20 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0152174","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Stimulated by improved oscillation estimates of the potential function and the scalar curvature on compact gradient Ricci solitons introduced in a recent study by Cheng, Ribeiro, and Zhou [Proc. Am. Math. Soc. Ser. B 10, 33–45 (2023)], we give several new sufficient conditions for compact four-dimensional normalized shrinking Ricci solitons to satisfy the Hitchin–Thorpe inequality. Our new conditions refine the validity of the Hitchin–Thorpe inequality obtained by Tadano [J. Math. Phys. 58, 023503 (2017)], Tadano [J. Math. Phys. 59, 043507 (2018)], and Tadano [Differ. Geom. Appl. 66, 231–241 (2019)].
期刊介绍:
Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects:
mathematical problems of modern physics;
complex analysis and its applications;
asymptotic problems of differential equations;
spectral theory including inverse problems and their applications;
geometry in large and differential geometry;
functional analysis, theory of representations, and operator algebras including ergodic theory.
The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.