Improved oscillation estimates and the Hitchin–Thorpe inequality on compact Ricci solitons

IF 0.5 4区 数学 Q3 MATHEMATICS
H. Tadano
{"title":"Improved oscillation estimates and the Hitchin–Thorpe inequality on compact Ricci solitons","authors":"H. Tadano","doi":"10.1063/5.0152174","DOIUrl":null,"url":null,"abstract":"Stimulated by improved oscillation estimates of the potential function and the scalar curvature on compact gradient Ricci solitons introduced in a recent study by Cheng, Ribeiro, and Zhou [Proc. Am. Math. Soc. Ser. B 10, 33–45 (2023)], we give several new sufficient conditions for compact four-dimensional normalized shrinking Ricci solitons to satisfy the Hitchin–Thorpe inequality. Our new conditions refine the validity of the Hitchin–Thorpe inequality obtained by Tadano [J. Math. Phys. 58, 023503 (2017)], Tadano [J. Math. Phys. 59, 043507 (2018)], and Tadano [Differ. Geom. Appl. 66, 231–241 (2019)].","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"20 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0152174","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Stimulated by improved oscillation estimates of the potential function and the scalar curvature on compact gradient Ricci solitons introduced in a recent study by Cheng, Ribeiro, and Zhou [Proc. Am. Math. Soc. Ser. B 10, 33–45 (2023)], we give several new sufficient conditions for compact four-dimensional normalized shrinking Ricci solitons to satisfy the Hitchin–Thorpe inequality. Our new conditions refine the validity of the Hitchin–Thorpe inequality obtained by Tadano [J. Math. Phys. 58, 023503 (2017)], Tadano [J. Math. Phys. 59, 043507 (2018)], and Tadano [Differ. Geom. Appl. 66, 231–241 (2019)].
紧化Ricci孤子上改进的振荡估计和Hitchin-Thorpe不等式
由Cheng, Ribeiro和Zhou最近的一项研究中引入的紧凑梯度Ricci孤子上的势函数和标量曲率的改进振荡估计的刺激[Proc. Am]。数学。Soc。爵士。[B],我们给出了紧化四维归一化收缩Ricci孤子满足Hitchin-Thorpe不等式的几个新的充分条件。我们的新条件改进了Tadano得到的Hitchin-Thorpe不等式的有效性[J]。数学。[J] .中国生物医学工程学报,2016,33(5):481 - 481。数学。[j] .中国生物医学工程学报,2016,33(5):487 - 487。几何学。中国生物医学工程学报,2016,36(2):481 - 481。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信