A study of the k-step generalized balancing sequences

E. K. Çetinalp, O. Deveci, N. Yilmaz
{"title":"A study of the k-step generalized balancing sequences","authors":"E. K. Çetinalp, O. Deveci, N. Yilmaz","doi":"10.31926/but.mif.2023.3.65.1.7","DOIUrl":null,"url":null,"abstract":"In this paper, firstly, we define the k-step generalized Balancing sequences and study the Binet formula of these sequences. Also, we find families of super-diagonal matrices such that the permanents of these matrices are the elements of the k-step generalized Balancing sequences. Finally, we examine the periods of the k-step Balancing sequences in the semi-direct product presented by G = < x, y | x2m−1 = y2 = 1, yxy = x−1 >  for the generating pair (x, y).","PeriodicalId":53266,"journal":{"name":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2023.3.65.1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, firstly, we define the k-step generalized Balancing sequences and study the Binet formula of these sequences. Also, we find families of super-diagonal matrices such that the permanents of these matrices are the elements of the k-step generalized Balancing sequences. Finally, we examine the periods of the k-step Balancing sequences in the semi-direct product presented by G = < x, y | x2m−1 = y2 = 1, yxy = x−1 >  for the generating pair (x, y).
k步广义平衡序列的研究
本文首先定义了k阶广义平衡序列,并研究了这些序列的Binet公式。此外,我们还发现了一些超对角矩阵族,使得这些矩阵的恒元是k步广义平衡序列的元素。最后,我们研究了生成对(x, y)在G = < x, y | x2m−1 = y2 = 1, yxy = x−1 >的半直接积中k步平衡序列的周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
11
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信